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1 Linear Categories

1.1 Semiadditive category

A category with a zero object (i.e., both initial and terminal object; and therefore zero morphisms)
and with finite products and coproducts in which the canonical map

i i

is an isomorphism—hence finite biproducts exist, and these are typically called direct sums .

1.2 Additive category

Any preadditive category is naturally enriched over commutative monoids: given maps f,g: X —
Y, define f + g as the composite:

X2 XxX=2XIX->YxY=2YIIY =Y

where the first map is the diagonal map (id, id), the second map is (f,0)I1(0, g), and the third one
is id IT id.

If such an enrichment extends to abelian groups, that is, if every map f has an inverse — f for
the previously defined sum, then the category is said to be an additive category.

Alternatively, additive means Ab-enriched plus finite products and coproducts exist (and be-
cause of the enrichment they are automatically isomorphic). Typically, the biproduct is represented
by the direct sum sign .

A functor between additive categories is additive if it preserves the finite biproducts, i.e., F'(0) =
Oand F(X@Y)= F(X)® F(Y).

1.3 Preadditive category

A category enriched over abelian groups.

1.4 k-linear category or k-category

A category enriched over k-modules, where k is a commutative ring with unit. A linear category
might not be additive (finite biproducts might not exist).

A functor between k-linear categories is linear if Fix y between the hom’s is a linear map. Linear
functors are automatically additive, i.e., they preserve the biproducts.

1.5 Additive envelope

As mentioned before, a linear category might not have all finite biproducts. But it always embeds
into a category that has them. The additive envelope Add(C) of a linear category C has objects
formal direct sums €, X; of objects of C and arrows given by matrices of arrows in C, with com-
position modelled by matrix multiplication. There is a canonical functor C < Add(C), and it is
determined by the universal property that if D has all finite biproducts, then there is a bijection

LinFun(C, D) = LinFun(Add(C), D)



1.6 Karoubi envelope

Remember that an idempotent in a category is an endomorphism f : X — X of a certain object
such that fo f = f. A splitting for an idempotent f is a pair of arrows r7: Y - X and s: Y — X
such that sor = f and ros = idy. Splittings for idempotents are unique up to unique isomorphism.

A category C is idempotent complete or Karoubian if all idempotents split. A linear category
might have idempotents that do not split. But it always embeds into a category where they do. The
Karoubian envelope or idempotent completion Kar(C) of a linear category C has objects idempotents
f: X — X (more precisely pairs (X, f)).

An arrow between two idempotents (X, f) and (Y, g) is an arrow h : X — Y such that h =
go ho f, with composition taken from C. There is a canonical functor C < Kar(C), taking X to
(X,id), and it is determined by the universal property that if D is idempotent complete, then there
is a bijection

LinFun(C, D) = LinFun(Kar(C), D)

1.7 Cauchy completion

A linear category is Cauchy complete if it has all finite biproducts and it is idempotent complete.
The Cauchy completion of C is Cauchy(C) := Kar(Add(C)) (warning: this is not equivalent to
Add(Kar(C))).

Every linear abelian category is Cauchy complete; the converse is not true.

1.8 Simple objects (non-abelian version)

If X is an object of a k-linear category, then End(X) is naturally a k-algebra with unit the identity.
It is not hard to see that the following items are equivalent:

(i) the map k — End¢(X), k+— k -id is an isomorphism of k-modules;

(iii) the k-algebra End¢(X) is isomorphic to k;

),

(ii) the map k — End¢(X), £+ k- id is an isomorphism of k-algebras;
)
) is free of rank 1.

)
)
iii) (
(iv) the k-module End¢ (X
If an object X satisfies any of these equivalent descriptions, we say that X is simple.
1.9 Semisimple category (non-abelian version)

Suppose C is a Cauchy complete linear category whose isomorphism classes of objects form a set.
Then the following conditions are equivalent:

(S) There is a set S and an equivalence of categories C = Vecyq(S) (the category of S-graded
vector spaces and grading-preserving maps).

(End) For every object X € C, the endomorphism space End(X) is a finite-dimensional complex
semisimple algebra, i.e., a multimatrix algebra.

(Obj) Every X € C is isomorphic to a finite direct sum of simple objects X = @' ; X;, where each
pair X;, X; are either isomorphic or distinct.



(Miiger) There is a set of pairwise distinct simple objects {X;}ses such that for any A, B € C, the
composition map
A — X,) @ C(X, — B) > C(A— B)
seS
is an isomorphism. (The direct sum is taken in the category of finite-dimensional vector
spaces.)

Being finitely semisimple means that .S is a finite set, i.e., there are finitely many isomorphism
classes of simple objects.

Fact: A Cauchy complete linear category is semisimple if and only if it is abelian and all short
exact sequences split.

More important fact: Linearity and object semisimplicity already imply abelianness! See Section
5.4.

1.10 Generators

Let C be an additive category. An object G € C is called a generator if any object of C is a quotient
of some direct sum of copies of G, that is, if there is an epimorphism G®" — X.

Lemma. G is a generator if and only if Hom(G, —) is faithful.

Proof. Let C be an additive category and G € C.
Step 1: If G is a generator, then Hom(G, —) is faithful.
Suppose G is a generator. By definition, for every X € C, there exists an epimorphism

f:G@I—»X

for some index set I.

Let g : X — Y be a morphism such that Hom(G, g) = 0. We want to show g = 0.

Consider the composition go f : G®! — Y. Since Hom(G, g) = 0, it follows that go f = 0. But
f is an epimorphism, so g = 0. Therefore, Hom(G, —) is faithful.

Step 2: If Hom(G, —) is faithful, then G is a generator.

Suppose Hom(G, —) is faithful. Let X € C be arbitrary. Consider the morphism

c: @ G— X
f€Hom(G,X)

which sends the f-th copy of G via f to X. We claim that c is an epimorphism.

Indeed, suppose h : X — Y satisfies h o ¢ = 0. Then for every f € Hom(G, X), we have
ho f =0. By the faithfulness of Hom(G, —), this implies A = 0. Hence ¢ is an epimorphism, and
X is a quotient of a sum of copies of G. O

2 Miscellaneous

2.1 Action groupoid

If G is a group and X is a G-set, the action groupoid X /G is the groupoid (=cat with all arrows isos)
with objects the elements and X, and an arrow z — y is a ¢ € G such that gxr = y. Composition
= multiplication on G.

This specialises to the usual way of viewing a group G as a groupoid with one object and arrows
G. This is then x//G.



2.2 Action of a group on a category

Recall that if X is a set or a topological space, a G-set or a G-space is the same as a functor
X :x)/G — Set / Top.

Now let us view %//G as a 2-category with only identity 2-cells, and let Cat be the 2-category
of categories, functors and natural transformations. Then a (non-strict/homotopy) action of G on
a category C is a pseudofunctor C : x//G — Cat.

Explicitly, this is the data of: for every g € G, an equivalence ¢4 : C 5 €, together with
the data of natural isos @ypn = @gp, subject to the associativity condition that the isomorphism
PgPrPk = PgPhk = Pghk €quals the iso pgpnYr = Qenor = Pgnk-

Alternative point of view: regard G as a discrete strict monoidal category with monoidal product
equals the product of G. Recall that End(C) is a monoidal category with monoidal product compo-
sition. Then an action of G on C amounts to the data of a strong monoidal functor G — End(C).

For an object X € C we write g.X := ¢4(X).

2.3 Homotopy fixed point for an action on a category

Let C be a G-category. A homotopy fixed point is the data of an object X € C together with
isomorphisms ay : 9.X — X satisfying

hag

h.g. X hX 2y X

F
(hg). X

The category C"¢ of homotopy fixed points has objects htpy fixed points and arrows maps
f:X = Y in C such that

g.X 205 X

|os ) lf

Y —> Y

3 Limits and Colimits

3.1 Kernel (via equalizer/pullback)

Let C be a category with a zero object 0 (an object that is both initial and terminal) and suppose
equalizers exist in C. For a morphism f : X — Y, the zero morphism Oxy : X — Y is the unique
factorization of X — 0 — Y.

The kernel of f can be defined as the equalizer of the pair of parallel morphisms f and Oxy:

ker(f) B X =) Y.

That is, k : ker(f) — X is an object and morphism such that f ok = Oxy o k(= Oxer(s),y) and it is
universal with this property (any other g : Z — X with f og = Oxy o g factors uniquely through

Since 0 is initial, the morphism 0 — X exists uniquely. Since 0 is terminal, the morphism
X — 0 exists uniquely. Their composite X — 0 — Y is the zero morphism Oxy .



Alternatively, in a category C with a zero object 0 (which is both initial and terminal) and
pullbacks, the kernel of a morphism f: X — Y can be defined using a pullback.

Specifically, the kernel k : ker(f) — X is the pullback of f along the unique zero morphism
Oy : 0 — Y. The pullback diagram is:

ker(f) —— 0
ke Oy

XﬁY

The map k automatically satisfies f o k = 0, and the universal property of the pullback ensures
that k is universal among all maps into X whose composition with f is zero.

3.2 Cokernel (via Coequalizer)

Dually, let C be a category with a zero object 0 and suppose coequalizers exist. For a morphism
f: X =Y, consider the zero morphism Oxy : X = Y.
The cokernel of f can be defined as the coequalizer of the pair f and Oxy:
x=/ v coker(f).

Oxy

That is, g : Y — coker(f) is an object and morphism such that go f = goOxy (= Ox coker(s)) and it
is universal with this property (any other ¢ : Y — Z with go f = g o Oxy factors uniquely through

q).

3.3 Left/Right Exact Functors

Let F': C — D be a functor between categories where certain limits or colimits exist.

The functor F' is left exact if it preserves all finite limits that exist in C. This means that if
L is the limit of a finite diagram D : J — C (where J is a finite category), then F(L) is the limit
of the diagram F'o D : J — D. Common examples include preserving terminal objects, products,
and equalizers (and thus pullbacks and kernels if they exist).

The functor F' is right exact if it preserves all finite colimits that exist in C. This means
that if C' is the colimit of a finite diagram D : J — C, then F'(C) is the colimit of the diagram
FoD:J— D. Common examples include preserving initial objects, coproducts, and coequalizers
(and thus pushouts and cokernels if they exist).

A functor is exact if it is both left exact and right exact (preserves all finite limits and finite
colimits).

In the context of abelian categories, these definitions are equivalent to the definitions involving
preservation of kernels/cokernels or exact sequences, assuming the functor is also additive.

3.4 RAPL / LAPC

Right Adjoints Preserve Limits, in particular right adjoints are left exact.
Left Adjoints Preserve Colimits, in particular left adjoints are right exact.
For finite abelian categories (see later), it is actually an iff.

Perhaps a better way to remember this:

Left adjoints preserve Limits IS WRONG.



3.5 Linear functor 4+ source semisimple imply exact

If F:C — D is a linear (additive) functor between linear abelian categories and C is semisimple,
then F' is exact.

This follows as in C short exact sequences split and then by additivity so do the images under
F.

In particular any linear functor vect — A is exact.

3.6 Pullbacks from Products and Equalizers

The existence of pullbacks in a category C is closely related to the existence of binary products and
equalizers.
Specifically, if a category C has all binary products and all equalizers, then it has all pullbacks.

To construct the pullback of a diagram X i> z&y:

1. Form the binary product X x Y with its projection morphisms py : X x Y — X and
py : X XY =Y.

2. Consider the two morphisms from the product to Z: fopx : X XY — Z and gopy : X XY —
Z.

3. Take the equalizer e : P — X x Y of this pair:

PS X xY =fox 7

The resulting object P together with the morphisms p; = pxoe: P — X and po =pyoe: P =Y
forms the pullback square:

<

P p2

p1

.<7
Q

N

X3

Conversely, if a category has all pullbacks and a terminal object (which acts as the empty
product), it has all finite products. If it has pullbacks and products, it also has equalizers (an
equalizer of h, k : A — B is the pullback of (h, k) : A — B x B along the diagonal Ag : B — Bx B).

Therefore, for a category C the following are equivalent:

e C has all finite limits,
e C has finite products and equalizers,
e C has pullbacks and a terminal object

In any of these equivalent cases we say that C is finitely complete.
Of course, as it is well known, C is complete (ie it has all small limits) iff C has all products and
equalizers.



3.7 Pushouts from Coproducts and Coequalizers

Dually, the existence of pushouts is related to the existence of binary coproducts and coequalizers.
If a category C has all binary coproducts and all coequalizers, then it has all pushouts. To

construct the pushout of a diagram X <i Z35Y:

1. Form the binary coproduct X + Y (often written X I1Y) with its injection morphisms ix :
X—>X+Yandiy:Y > X+Y.

2. Consider the two morphisms from Z to the coproduct: ixof:Z > X +Y andiyog: Z —
X+Y.

3. Take the coequalizer ¢ : X +Y — P of this pair:

z=xl x vy 4 p

ty °g

The resulting object P together with the morphisms ¢ = qoix : X — P and ¢o =qoiy:Y — P
forms the pushout square:

71, x

| e

Y — P
q2

Conversely, if a category has all pushouts and an initial object (empty coproduct), it has all
finite coproducts. If it has pushouts and coproducts, it also has coequalizers (constructed dually
to equalizers using pushouts and codiagonals).

Therefore, for a category C the following are equivalent:

e C has all finite colimits,
e C has finite coproducts and coequalizers,
e C has pushouts and an initial object.

In any of these equivalent cases we say that C is finitely cocomplete.
Of course, as it is well known, C is cocomplete (ie it has all small colimits) iff C has all coproducts
and coequalizers.

3.8 Ends and coends

These concepts are fundamental tools for working with functors T : C°? x C — D. Ends and coends
provide universal objects capturing information “along the diagonal” T'(c, ¢), defined via dinatural
transformations.

Dinatural Transformations (cf. T-V B.1.1)
Let C be a category and T : C°? x C — D be a functor.

e A dinatural transformation from an object D of D to T is a family of morphisms

a = {ac : D — T(Ca C)}CEOb(C)

10



such that for every morphism f : ¢ — d in C, the following diagram commutes:
D —% 5 T(c,c)

adl |re)

T(d,d) 2 74, ¢)
The commutativity condition is T'(1., f)oa. = T(f, 14) ocg. This family is denoted o : D =T
(ora:Ap=T).

e A dinatural transformation from 7 to an object D of D is a family of morphisms
B={Bc:T(c,c) = D}econ(c)

such that for every morphism f : ¢ — d in C, the following diagram commutes:

T(d,e) "0 74, d)

T(fvlc)l lﬁd

T(C, C) B—>

The commutativity condition is 54071 (14, f) = BeoT(f,1.). This family is denoted § : T' = D
(or B:T = Ap).

(Note: The general definition of a dinatural transformation between two functors S, T : C?xC —
D requires a hexagonal diagram, as shown in T-V B.1.1. The square diagrams above are special
cases for constant source/target functors.)

Coends (T-V B.1.3)

Let T : C°? x C — D be a functor. The coend of T', denoted fc T(c,c), is an object of D equipped
with a dinatural transformation

w’:T#/CT(c,C)

satisfying the universal property:
For any object z € D and any dinatural transformation § : T = =z, there exists a unique
morphism

h: /CT(c,c) —x
such that 8. = h oW/, for all c:
T(c,c) SN [T (c,c)
ﬁcl ih
r—————x

The coend is the universal recipient for dinatural maps from T. If D has the necessary colimits,
it can be constructed as a coequalizer:

/c T(c,c) = coeq H T(c,d) = HT(C, c)

fie—d c

where the parallel arrows are induced by the morphisms T'(1., f) and T'(f, 14) into the respective
summands.

11



e Example (T-V B.1.3, Ex 1): Tensor product

F®CG:/ (F(c) x G(c))
for F : C°’ — Set and G : C — Set.

Ends (T-V B.1.2)

Let T : C°? x C — D be a functor. The end of T', denoted fc T(c,c), is an object of D equipped
with a dinatural transformation

w:/cT(c,c)iT

satisfying the universal property:
For any object x € D and any dinatural transformation o : x = T, there exists a unique
morphism

h::c—>/cT(c,c)

such that o, = w. o h for all c:
r —" ch(c, c)

e

v —5— T(c,c)

The end is the universal source for dinatural maps to T. If D has the necessary limits, it can
be constructed as an equalizer:

/T(c, c) =eq HT(C, c) = H T(d,c)
¢ c fic—d

where the parallel arrows arise from the dinaturality condition applied to the projections m. :
[[,T(b,b) — T(c,c). The first map’s f-component is T'(f,1.) o ., and the second map’s f-
component is T'(14, f) o mq.

e Example (T-V B.1.2, Ex 1): Natural transformations

Nat(F,G) = /Homp(Fc, Ge).

C

Properties (cf. Turaev—Virelizier Appendix B)

e Hom-Set Isomorphisms (T-V B.1.4): Mapping into an end or out of a coend corresponds
to taking the end of the relevant Hom-functor in Set:

Homp (z, / T(c,c)) = / Homp(z, T(c, )

Homp ( / “T(ec),a) / Homp(T(c, ¢), z).

12



e Fubini Theorem (T-V B.1.5): Under suitable conditions, the order of integration can be

swapped:
/ / T(c,d,c,d) = / / T(c,d,c,d),
eC JdeD deD Jcel

ceC [deD deD
/ / T(c,d,c,d) / / T(c,d,c,d).

e Other properties include preservation by certain functors and relations under adjunctions
(T-V B.1.6).
3.9 Homotopy fibre of a functor

Let F': A — B be a functor, and let b € B. The homotopy fibre hofib,(F') of F' at b is defined as
follows: an object of the homotopy fiber hofiby(F’) is a pair (a, ¢) where:

e ¢ is an object in A.
e ¢ is a morphism in B of the form ¢ : F(a) — b.

The morphism ¢ serves as a ”bridge” or ”"path” demonstrating how the image of a is related to the
target object b.

A morphism in hofiby(F) from an object (a, ®) to an object (a’,¢') is a morphism h : a — a
in the category A such that the following diagram commutes in B:

F(h)

b

F(a) F(d)

The commutativity condition is explicitly: ¢’ o F'(h) = ¢.
Forgetting ¢ we get a functor hofiby(F') — A.

3.10 Homotopy pullback

Consider a diagram of categories and functors:
AL BEC

The homotopy pullback, denoted A x% C, is a new category constructed as follows.
An object of the homotopy pullback category A xl}% C is a triplet (a,c, ¢) where:

e ¢ is an object in A.
e ¢ is an object in C.
e ¢ is an isomorphism in B of the form ¢ : F(a) — G(c).

A morphism in A xg C from an object (a,c, @) to an object (d’, ;') is a pair of morphisms
(ha,hc) where:

e hy:a— d is a morphism in A.
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e ho:c— ¢ is a morphism in C.
This pair must satisfy the condition that the following diagram commutes in the category B:

Fla) 2 p(ay

a |#

Gle) £ G

The commutativity condition is explicitly: ¢' o F'(ha) = G(h¢c) o ¢.
Note we get a square
AxEC ——C

L]

A— B

which is commutative up to natural isomorphism, ie the two resulting functors A Xg C — B are
naturally isomorphic.
The homotopy fibre hofiby(F') of a functor F': A — B is nothing but the homotopy pullback of

the cospan A LBk

4 Monoidal Categories and Related Structures

4.1 Monoidal category

A tuple (C,®,1,a,l,r) of a category C with a bifunctor ® : C x C — C, an object 1 and natural
isomorphisms

axyz (XQY)®Z XY ®Z), Ix:1X =X, ry: X®l—=X
satisfying the so-called pentagon equation and the triangle equation.

4.2 Left rigid category

A monoidal category in which every object admits a left dual, that is, for every object X there
exists a pair (VX,evy) where VX is another object and a left evaluation

evy "X ®X =1
is a non-degenerate pairing. This means that there exists another map
coevy :1 > X VX
called the left coevaluation satisfying
(Id®evy)(coevy @1d) =1d, (evy ®Id)(Id ® coevy) = Id.

Left duals are unique up to unique isomorphism.
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4.3 Right rigid category

A monoidal category in which every object admits a right dual, that is, for every object X there
exists a pair (XV,évy) where XV is another object and a right evaluation

vy XX =1
is a non-degenerate pairing. This means that there exists another map
coevy 11> XV X
called the right coevaluation satisfying
(Id® évy)(coevy @ Id) =1d, (évx ®Id)(Id ® coevy) = Id.

Right duals are unique up to unique isomorphism.

4.4 Rigid or autonomous category

A monoidal category which is both left and right rigid.
Note that there are natural isomorphisms

V(=) =1d <= V((-)Y)

4.5 Pivotal or sovereign category

A pivotal structure on a rigid category is the data of a monoidal natural isomorphism Id =, (—)VV.

Alternatively, this is the same as a monoidal natural isomorphism v (—) = (—)V.
If we start with a right rigid category, then a pivotal structure is also a monoidal natural

isomorphism Id = (—)VV, and it defines a left rigid structure with VX := XV (in that case we
put X*).

By the uniqueness of duals, both approaches are equivalent. The key thing is that "rigid
category” means a category that admits right and left rigidity; this is different from a category
with distinguished duality, where the exact duality is fixed.

4.6 Spherical category (classical definition)

If C is a pivotal category, we have the notions of left and right traces of an endomorphism f : X — X,
defined as follows:

try(f) == evx(Idx~ ® flcoevyx : 1 — 1, tr.(f) :==eévx(f ® Idx+)coevy : 1 — 1.
We also have the notions of left and right dimensions of an object X:
dim;(X) := evxcoevy, dim,(X) :=évxcoevy.

A spherical category is a pivotal category whose left and right traces coincide (and therefore
also the left and right dimensions).
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4.7 Braided category

A monoidal category endowed with a natural isomorphism
XY XY Y X
which is ®@-multiplicative in the sense that

Txyvez = (dy @ 7x z)(7xy ®idz), 7xev,z = (7x,z ®idy)(idx ® 1y,7)

The case of a braided rigid category If C is a braided rigid category, then for every object

X € C there is a natural isomorphism X 5X YV which is the “twist” in the graphical language —
it is an isomorphism by the Whitney trick in the graphical language. This is the composite

coev xv ®id WdRTxvv xv evx ®id
—

X XoXWeXY XoXVeXVV XV (1)

This is called the Drinfeld isomorphism. See also Shibata-Shimizu §6.4.

This isomorphism is NOT canonical; in general there are infinitely many isomorphisms X 22
XYV, Furthermore, this natural isomorphism is NOT a monoidal natural transformation and
therefore does NOT define a pivotal structure.

4.8 Ribbon or tortile category (take 1)

Let C be a braided pivotal category. The left twist is defined as the following family of morphisms
(in fact natural isomorphisms):

0 := (evx ®idx)(idx+ ®Tx x)(Coevy ®idx) : X — X
whereas the right twist is

0 = (idx ®evy)(rx,x ®idx+)(idx ® coevy) : X — X.
A ribbon category is a braided pivotal category in which the left and right twists coincide, § = 6 =
0". It automatically satisfies that the twist is self-dual in the sense that (6x)* = 0x~.

4.9 Balanced category

A braided category together with a twist, that is, a natural isomorphism 6 : X — X, called the
twist, satisfying
Oxey = Ty xTxy(0x ® Oy).

From this condition it automatically follows that 6, = id;, see Kassel Lemma XIV.3.3.

4.10 Braided pivotal = balanced rigid

(Deligne, see [43, Prop. 2.11]), also (Selinger, Lemma 4.20)
Let C be a braided rigid category. Then giving a twist # on C (making C into a balanced rigid

category) is equivalent to giving a pivotal structure Id = (—)VV (making C into a braided pivotal
category).
The correspondence goes as follows: given a twist 6, a pivotal structure is given by the composite

Xy x oy xw
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where the second arrow is (1). Conversely, given a pivotal structure w : Id = (—)VV, a twist is

obtained as the composite

w

X =y XWX

where the second arrow is the inverse of (1).

4.11 Ribbon or tortile category (take 2)

A balanced left rigid category in which the twist and the rigid structure are compatible in the sense
that

V(fx) = Ovx.
4.12 Monoidal k-linear category

A monoidal category which is also k-linear and whose monoidal product is k-bilinear.

4.13 Pre-fusion category (non-abelian version)

A pre-fusion k-category is a monoidal k-linear category C with the property that there exists a
collection of simple objects (V;);er indexed by some set I satisfying that:

(a) the monoidal unit 1 belongs to the family (and it is typically indexed as Vp = 1);
(b) Home(V;,V;) =0 if i # j;
(c) every object of C is a direct sum of finitely many objects from the indexed collection (V;);e;.

It readily follows that every simple object in C is isomorphic to exactly one object from (V;);ec;.
Also, (b) and (c¢) imply that the hom-sets are finite-free k-modules and that for any pair of objects
X,Y:
Home(X,Y) = @ Home (X, V;) @ Home (V;, Y).
1€l
4.14 Fusion category (non-abelian version)

A pre-fusion rigid linear category in which the index set [ is finite.
The dimension of a pivotal fusion linear category is given by:

dim(C) := Z dim (V;) dim,(V;),

icl

and if the category happens to be spherical then this formula becomes:

dim(C) = 3 (dimy(V7))2.

icl
4.15 Modular category (non-abelian, fusion version)
A ribbon fusion k-linear category with the property that, if:
S5 = tr(T‘/j,‘/iT‘/i,‘/}') € Ende(1) =k

(where 7 denotes the braiding), then the S-matrix S = (s;5); jer is invertible over k.
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4.16 Drinfeld center
Let (C,®,1) be a monoidal category. The Drinfeld center Z(C) is defined as follows:

Objects: Pairs (Z,5z), where Z € Cand 87 = {fzx : Z® X 55X Z} xcob(c) is a family of
natural isomorphisms (called the half-braiding) satisfying:

e Naturality: for any f: X — Y, the diagram
Bz,x
ZRX — X®Z

idz®fi lf@idz
70V 2 vez

commutes.
e Coherence: ﬁZ’X(@y = (idX X ﬁzy) o (BZ,X & idy);
e Unit compatibility: 871 = idz.
Morphisms: A morphism [ : (Z,8z) — (W, Bw) is a morphism f : Z — W in C such that:

(idx ® f) o Bzx = Pw,x o (f ®idx)

for all X €, i.e.,

79X 22X xez
f®idxi fdxw
Bw,

WeX 25 XeWw
Monoidal structure: Z(C) is a braided monoidal category with:
e Tensor product: (Z,8z) @ (W, fw) := (Z @ W, Bzgw ), where:
Bzewx = (Bzx ®@idw) o (idz ® Bw.x)
e Unit: (1, /1), where 8; x =idy;
e Braiding: c¢(z,)w,sw) = Bzw-

4.17 Miiger center

Let (C,®,1,¢) be a braided monoidal category. The Miiger center Z5(C) is the full subcategory
of C whose objects Z satisfy:

CX,ZOCZ,X:idZ(X)X for all X € C.

Z5(C) inherits the monoidal structure and is a symmetric monoidal category.
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4.18 Equivalent Characterizations of Modular Categories

Theorem: Let C be a braided fusion category over an algebraically closed field k. Let { X, };cr be
a complete set of representatives of isomorphism classes of simple objects with Xo = 1. Let cxy
denote the braiding and C the same category with inverse braiding.

The following are equivalent:

(i) Trivial Miiger center: Z5(C) = Vecy;
(ii) Invertible S-matrix: The matrix S = (.5;;), with entries
Sij = Tr(ex; x; © €x, ;)
is invertible over k;

(iii) Drinfeld center equivalence: Z(C) 2 CKXC.

Remarks:

e The pair (S,T), with T;; = 6;, is called the modular data.

e These equivalences are due to Miiger.

Condition (i) expresses maximal non-degeneracy.

Condition (iii) shows that the center is determined by the braiding and its inverse.

4.19 Grothendieck-Verdier category

(Following Miiller-Woike)

A Grothendieck- Verdier category is a monoidal category C together with an object K € C such
that C(— ® Y, K) is representable for every Y € C and such that the functor D : C°? — C sending
Y to a representing object DY for C(— ® Y, K) is an equivalence. The object K is referred to as
dualizing object. The functor D is referred to as duality functor.

In more detail, the functor D is defined by choosing an object DY € C and a natural isomor-
phism C(— ® Y, K) ~ C(—, DY) for every Y € C. The assignment ¥ — DY extends to a functor
by the Yoneda Lemma. Note that representability of C(— ® Y, K) is a property; the pair of the
choice of DY as representing object and the isomorphism C(— ® Y, K) ~ C(—, DY), however, is
only unique up to canonical isomorphism. While D is only essentially unique in the sense just
explained, the requirement that D is an equivalence does not depend on the choice involved in the
definition of D.

Since D is an equivalence we have

CX®Y,K)=C(X,DY)=C(Y,D 'X)

so C™ is also a GV-category with D1, Note: D(1) 2 K as — ® 1 = (—) = id, and similarly
D71(1) 2 K. Hence we have canonical isomorphisms

D?*(1)=2 DK =~DD '1=1

and
K=~ D1~D?’D "1~ D?K.

Example: Every (right) rigid monoidal category is an example of a Grothendieck-Verdier category
with D = (=) and K = 1.
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4.20 Pivotal Grothendieck-Verdier category

A pivotal structure on a GV-category is a monoidal natural isomorphism w : id = D? such that
wg : K — D? agrees with the canonical isomorphism from above.

4.21 Braided Grothendieck-Verdier category

A braided category equipped with a GV duality is called a braided Grothendieck-Verdier category.
Analogous to Section 4.10, we have (BD, Prop 7.1):
If C is a braided GV-category, then there is a bijection between

e pivotal structures on C
o twists satisfying 0x = idk.

Hence pivotal braided GV = balanced GV with 0 = idk..

4.22 Ribbon Grothendieck-Verdier category

This is a pivotal braided GV-category (= balanced GV-category with 8 = id) with the additional
compatibility condition that DOy = 0px.

5 Abelian Categories and Related Structures

5.1 Kernels and cokernels

Let C be a category with a zero object, and let f : X — Y be a morphism. A kernel of f is a pair
(ker(f),i : ker(f) — X) such that foi = 0, and it is universal with respect to this property: if
g:Z — X satisfies f o g =0, then there exists a unique ¢’ : Z — ker(f) such that i o ¢’ = g:

Z

ag 7
el
e
f

ker(f) —— X — Y

A cokernel of f is a pair (coker(f),m : Y — coker(f)) such that wo f = 0, and it is universal with
respect to this property: if g : Y — Z satisfies go f = 0, then there exists a unique ¢’ : coker(f) — Z
such that ¢’ om = g:

x Loy 7, coker(f)

gl ///
e w3
A kernel of a cokernel is called the image of f, denoted im(f) — Y. A cokernel of a kernel is

called the coimage, denoted X — coim(f). The universal properties guarantee uniqueness up to
unique isomorphism.
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5.2 Monos and epis

If C is an arbitrary category, a morphism i : X — Y is a monomorphism (or monic) ifio f =iog
for morphisms f,g: Z — X implies f = ¢g. Dually, a morphism 7 : X — Y is an epimorphism (or
epi) if f om = g on for morphisms f,g:Y — Z implies f = g.

If C is additive, then:

e i: X — Y is monic if and only if ¢ o f = 0 implies f = 0;

e 7: X — Y isepiif and only if f ow =0 implies f = 0.

Another characterisation (still assuming additivity):

e i: X — Y is monic if and only if the unique morphism 0 — X is a kernel of ¢;

e m: X — Y is epi if and only if the unique morphism Y — 0 is a cokernel of .

5.3 Abelian category

If C is an additive category, one can easily see that all kernels are monic and all cokernels are epi.
The converse might not hold. When it does, then we talk of an abelian category.
More precisely, an additive category C is abelian if:

(a) every morphism has a kernel and a cokernel,
(b) every monomorphism is the kernel of its cokernel,
(c) every epimorphism is the cokernel of its kernel.
If F: A— Bis a functor between abelian categories, then:
e Fis left exact if it is additive and preserves kernels: F'(ker(f)) = ker(F'f);
e Fis right exact if it is additive and preserves cokernels: F'(coker(f)) = coker(F'f);
e F'is exact if it is both left and right exact.
Exactness can also be expressed in terms of short exact sequences, where these are defined in
abelian categories using kernels and images.
5.4 Linear + object semisimple imply abelian
This proof uses the key consequence that in a k-linear semisimple category, every monomorphism

and every epimorphism splits.

Assumptions
e C is k-linear with finite biproducts ().
e C is semisimple (every object is finite @ of simples S;, Schur’s Lemma holds).

¢ Key Consequence: Every mono splits; every epi splits.

Goal: Show C is Abelian
(A) Zero Object: Exists (empty @).
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(B) Finite Biproducts: Exists (by assumption).

(C) Existence of Kernels and Cokernels:

e Kernelof f: X — Y:

1
2
3
4

5.

Decompose X = @, ; S;. Let J = {i € I| foinclg, = 0}.

Define K = P, 5j and let k : K — X be the canonical inclusion.

Check f ok = 0: True by definition of J.

Check Universality: Let g : Z — X satisfy fog = 0. Since k : K — X is a monomor-
phism (inclusion of summands), it splits by the Key Consequence. Let px : X — K be a
projection such that px ok = idg. Define h = pgog: Z — K. We must show koh = g.
Let X @ K ® K’ where ¥/ : K/ — X. Any map g : Z — X corresponds to a pair
(95, 9K') = (PK © g, PK’ © g).

We have

fog=fo(kogx +K ogr)=(fok)ogr +(fok)ogr =0+ (fok')ogr =0.

By construction of K, f restricted to K’ (via fok’) is non-zero on the simple components
of K'. This forces gg = 0.

So g corresponds to (gx,0), which means g = k o gx. Taking h = gx = pr © g gives
k o h = g. Uniqueness of h follows because k is mono.

Kernels exist.

e Cokernel of f: X — Y:

1.

Let I CY be the subobject generated by the images of all simple summands of X under
f. (Technically, I =) Im(f oinclg,).) Since C is semisimple, the subobject I is a direct
summand: Y 2 [ @ C.

. Let p: Y — C be the projection onto C.
. Check po f = 0: The image of f lies entirely within I. The projection p annihilates I.

Sopo f=0.
Check Universality: Let h : Y — Z satisfy ho f = 0. This implies h restricted to I is

zero (hoincly = 0). Since p: Y — C' is an epimorphism (projection from a direct sum),
it splits by the Key Consequence. Let s : C' — Y be a section (p o s = id¢). Define
q=hos:C — Z. We must show gop = h.

Any map h: Y — Z corresponds to a pair (h, h¢) where hy = hoincl; and he = hos.
The condition h o f = 0 implies h; = 0. So h corresponds to (0, h¢).

q = hos= hc.

q o p takes y = (yr,yc), maps via p to yo, maps via ¢ to ho(yc). This corresponds to
the map (0, h¢), which is h. Yes. Uniqueness of g follows because p is epi.

. Cokernels exist.
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(D) Monos are Kernels, Epis are Cokernels:

e Let m: A — X be mono. It splits, so X 2 A® C. Let p: X — C be the projection. By the
kernel construction in (C), K = ker(p) is the sum of simple summands of X annihilated by

p, which is exactly A. So
m = ker(p) = ker(coker(m)).

o Let e: X — C beepi. It splits, so X 2 K@ C. Let k : K — X be inclusion. By the cokernel
construction in (C), P = coker(k) is the projection onto the summand complementary to K,
which is C. So

e = coker(k) = coker(ker(e)).

Conclusion: Since axioms (A)—(D) hold, C is an abelian category.

5.5 The Hom bifunctor is left exact in both variables

For any object X in an abelian category A, the functor F = Hom(X, —) : A — Ab and the functor
G = Hom(—, X)) : A — Ab are left exact.
To prove that Hom(X, —) is left exact, we must show that for any short exact sequence 0 —

A i> B4 C—0in A, the following induced sequence of abelian groups is exact:
0 — Hom(X, A) ELN Hom(X, B) £ Hom(X, C)

Here, the maps are induced by post-composition: f.(a) = f o« and g.(f8) = go . We must prove
exactness at Hom(X, A) and at Hom(X, B).

1. Exactness at Hom(X, A): We must show that f, is a monomorphism (injective). Let a €
Hom(X, A) be a morphism such that f.(«) = 0. By definition, fi(a) = foa = 0. Since f
is a monomorphism (from the original exact sequence), it is left-cancellable. From the equation
foa= fo0, we can cancel f to obtain a = 0. Thus, ker(f,) = {0}, and f, is injective.

2. Exactness at Hom(X, B): We must show that im(f,.) = ker(g.).

Inclusion im(f,) C ker(g.): Let 8 € im(fs). By definition, there exists an « € Hom(X, A)
such that 8 = fi«(a) = f o a. We apply g« to :

6:(8) = gu(foa) = go (foa) = (go f)ea.

From the original short exact sequence, we know that im(f) = ker(g), which implies that the
composition g o f = 0. Therefore, g.(5) = 0 o a = 0. This shows that 5 € ker(g), so im(f,) C
ker(g.).

Inclusion ker(g.) C im(f,): Let 8 € ker(g«). This means that ¢g.(8) = go f = 0. In the
original sequence, (A, f) is the kernel of g. The universal property of kernels states that any
morphism into B that becomes zero when composed with g must factor uniquely through the
kernel of g. Since g o 8 = 0, there exists a unique morphism « : X — A such that 8 = f o «.
By the definition of f., this is equivalent to 8 = f.(«), which proves that 8 € im(f). Thus,
ker(g.) C im(f.).
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Since we have shown both inclusions, we conclude that im(f,) = ker(g«). This completes the
proof of left exactness for the covariant Hom functor.

Now we show that G = Hom(—,Y) : A% — Ab is left exact.

To prove that Hom(—,Y") is left exact, we must show that for any short exact sequence 0 —

ALB%Cc S50 A, the following induced sequence of abelian groups is exact:
0 — Hom(C,Y) L Hom(B,Y) L5 Hom(A4,Y)

Here, the maps are induced by pre-composition: ¢g*(y) = vo g and f*(d) = § o f. We must prove
exactness at Hom(C,Y) and at Hom(B,Y).

1. Exactness at Hom(C,Y): We must show that ¢g* is a monomorphism (injective). Let v €
Hom(C,Y) be a morphism such that ¢g*(y) = 0. By definition, ¢g*(7) = yo0g = 0. Since g
is an epimorphism (from the original exact sequence), it is right-cancellable. From the equation
~vog=0o0g, we can cancel g to obtain v = 0. Thus, ker(¢g*) = {0}, and ¢g* is injective.

2. Exactness at Hom(B,Y): We must show that im(g*) = ker(f*).

Inclusion im(g*) C ker(f*): Let 6 € im(g*). By definition, there exists a v € Hom(C,Y)
such that § = g*(y) = yog. We apply f* to d:

[ (0)=f(yog)=(yog)of=v0(gof).

Since g o f = 0 in the original sequence, we have f*(§) =00 = 0. This shows that § € ker(f*),
so im(g*) C ker(f*).

Inclusion ker(f*) C im(g*): Let ¢ € ker(f*). This means that f*(6) = do f = 0. In the
original sequence, (C, g) is the cokernel of f. The universal property of cokernels states that any
morphism from B that is zero when pre-composed with f must factor uniquely through the cokernel
of f. Since do f = 0, there exists a unique morphism v : C' — Y such that § = yog. By the definition
of g*, this is equivalent to 6 = g*(vy), which proves that ¢ € im(g*). Thus, ker(f*) C im(g*).

Since we have shown both inclusions, we conclude that im(g*) = ker(f*). This completes the
proof of left exactness for the contravariant Hom functor.

5.6 The functor — ®z M is right exact

Suppose for a moment that we are in the category of R-modules. Then the functor — ® M :
R — mod — R — mod is right exact. It is NOT left exact in general. When it is, M is called a flat
module.

5.7 Flat module

That M for which — ® M : R — mod — R — mod is exact.
Examples of flat modules: free modules and projective modules.
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5.8 Right exact functors that coincide on projective objects coincide every-
where

Theorem: Let A and B be abelian categories, and assume that A has enough projectives. Let F, G :

A — B be two right-exact functors. If there exists a natural isomorphism ¢ : Flpyoj4) = Glproj(a)

on the full subcategory of projective objects Proj(.A), then F' and G are naturally isomorphic.
That is, if they “coincide” on projective objects they “coincide” everywhere.

Proof Our goal is to construct a natural isomorphism 7 : F' — G. This requires us to define, for
each object X € A, an isomorphism nx : F(X) — G(X) such that for any morphism f: X — Y
in A, the following diagram commutes:

Step 1: Construction of the isomorphism 7x.
Since A has enough projectives, for any object X € A, we can choose a projective presentation,
which is an exact sequence:

P p B x 0

where Py and P, are projective objects.
Applying the right-exact functors F' and G to this sequence yields two exact sequences in B:

F(Ry) 2% p(x) =0

(P 2 qp) E9 qix) = 0

From the exactness of these sequences, we can identify F'(X) and G(X) as the cokernels of F'(dy)
and G(d) respectively:

F(X) = coker(F(dy))

G(X) = coker(G(dy))

1

By hypothesis, we have a natural isomorphism ¢ : F|poj4) = Glproja)- Since Py and Pp are
projective, we have isomorphisms ¢p, : F(Py) — G(Py) and ¢p, : F(P1) — G(P1). The naturality
of ¢ with respect to the morphism d; : P, — Py means that the following diagram commutes:

F(P) 275 G(Py)
lF(dl) \LG((h)
P

F(Po) — G(Po)

Since ¢p, and ¢p, are isomorphisms, this commutative diagram induces a unique isomorphism
between the cokernels. We define nx : F'(X) — G(X) to be this unique isomorphism.

Step 2: Independence of the choice of projective presentation.

We must show that nx is independent of the chosen projective presentation. Suppose we have
another projective presentation P; — Pj — X — 0. By the fundamental lemma of homological
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algebra (or properties of projective objects), there exists a chain map between these two presenta-
tions, which is unique up to chain homotopy. This chain map induces a commutative diagram:

d do

P1 ! > P() » X 0
lhl iho lidx

d] df
Pl — P, —> X 0

Applying the functors F' and G and the natural isomorphism ¢ results in a larger commutative
prism. The universal property of the cokernel then guarantees that the induced isomorphism 7y is
the same, making our definition well-defined.

Step 3: Naturality of 7.

Now, let f : X — Y be an arbitrary morphism in .\A. We need to show that G(f)onx = nyoF(f).

Choose projective presentations for both X and Y:

P py P x 0

Q16—1>Q06—0>Y—>0

Since P, is projective and eg : Qo — Y is an epimorphism, we can lift the morphism f: X — Y to
a morphism fy : Py — Qg such that eyo fy = fody. Similarly, we can find a morphism f; : P, — Q1
that makes the following diagram commute:

dy d

P, » Py —— X » 0
ifl ifo if
Qi 2 Qy 2>V > 0

Now, we apply the functors F' and G. By functoriality, we get two commutative diagrams in
B. We then combine these with the natural isomorphisms given by ¢ to form the faces of a three-
dimensional diagram (a cube). The commutativity of the diagram involving fy and f; for F' and G
respectively, combined with the naturality of ¢ for fy and fi, leads to the following commutative
diagram:

FP) N p(R) —™ 1 F(X)

F(f1) F(fo) FC“)\
F(Q) 2 p(Qo) — vy
¢>;11A ¢;§A ] "’\”\\
ap) 2N qpy) —T s G(X) é(y)
¢ |G(f) Sae |G(fo) G(/

G(er)

G(Q1) G(Qo) — ¢ G(Y)

where 7p, TG, T, T are the cokernel maps.
From the universal property of the cokernel, F/(X) = coker(F(dy)), there is a unique map F(f) :
F(X) — F(Y) satisfying F(f) o mp = 7 o F(fp). Similarly, a unique map G(f) : G(X) — G(Y)

exists.
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Our definition of nx and 7y is via the isomorphisms induced by ¢ on the cokernels. The
commutativity of all the constituent squares (due to functoriality and the naturality of ¢) forces
the outer diagram involving F'(f), G(f),nx, and ny to commute.

Specifically, consider the composition ny o F(f) o mp. By the diagram, this is equal to ny o
7y o F(fo). By the definition of ny, this is 7y o ¢g, o F/(fo). By the naturality of ¢, this is
7 0 G(fo) o ¢p,. By the definition of G(f), this is G(f) omg o ¢p,. Finally, by the definition of 7x,
this is G(f)onx omp. So we have (ny o F(f))onr = (G(f)onx)onp. Since mp is an epimorphism,
we can cancel it from the right, which gives us:

ny o F(f)=G(f)onx

This establishes the naturality of . Thus, n: F' — G is a natural isomorphism.

5.9 Monoidal abelian category

A category which is monoidal and abelian with the following compatibility conditions: the tensor
product ® is a biadditive functor (i.e., additive in each variable).

5.10 Monoidal abelian k-linear category

A category which is monoidal, abelian and k-linear with the following compatibility conditions: the
k-module enrichment extends the abelian group enrichment, the tensor product ® is a k-bilinear
functor, and the unit 1 is a simple object with End(1) = k.

5.11 Projective and injective objects

An object A in an abelian category A is projective if for every epimorphism p : X — Y and every
morphism f: A — Y, there is a morphism f’: A — X that lifts p, i.e., f =po f’:

-,

A——Y

An object A in an abelian category A is injective if for every monomorphism ¢ : ¥ — X and
every morphism f : Y — A, there is a morphism f’ : X — A that extends i, i.e., f = f' oi:

Y%A

R
|
=
X
One can show, as for the category of modules, that an object A is projective if and only if the

functor
Homy(A,—): A — Ab

is exact. Similarly, an object A is injective if and only if the functor
Homy(—, A) : A — Ab

is exact.
In the abelian category of R-modules, free = projective.
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In the abelian category of Z-modules (i.e., abelian groups), divisible = injective (recall that
an abelian group A is divisible if for every non-zero integer n, the canonical map A — A, a — na
is surjective. If A is torsion-free, then this is the same as A being uniquely divisible, i.e., that
map being an isomorphism, because being torsion-free means precisely that such a map is always
injective.) So examples are Q, Q/Z, etc.

5.12 Semisimple category

This is the analogue of pre-fusion categories for abelian categories (instead of for linear categories).
Let A be an abelian category and let Y be an object. A subobject of Y is a monomorphism
i: X =Y. A quotient object of Y is an epimorphism 7 :Y — Z.
A non-zero object X is said to be

(i) simple if the source objects of its subobjects are all isomorphic to X or 0,
(ii) semisimple if it is a coproduct of simple objects,
(iii) indecomposable if it is not a coproduct of at least two non-zero subobjects.

An abelian category is semisimple if all its objects are semisimple.

Note: there are many other versions of what a semisimple category should be in other contexts
different than abelian categories, see here for an overview and comparison.

5.13 Semisimplicity vs. Projectivity in Abelian Categories
Theorem: Let C be an abelian category. The following conditions are equivalent:
1. C is semisimple (every object is a direct sum of simple objects).
2. Every short exact sequence in C splits.
3. Every object in C is projective.
4. Every object in C is injective.

5. Every subobject of any object in C is a direct summand.

Proof Sketch for (1) < (3)
(3) = (1): Assume every object is projective. Show C is semisimple.

e It suffices to show that every short exact sequence (SES)
0A5BEC—0
splits.
e By assumption, the object C' is projective.

e The definition of projective means that for the epimorphism p : B — C' and the identity
morphism id¢ : C' — C, there exists a lifting (a section) s : C'— B such that po s = id¢.

e The existence of such a section s means the SES splits.

e Since every SES splits, C is semisimple.
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(1) = (3): Assume C is semisimple. Show every object P is projective.

e We need to show that for any epimorphism p : B — C and any morphism f : P — C, there
exists f : P — B such that po f = f.

e Since C is semisimple, every SES splits. Consider the SES

0-K5BE oo,
where K = ker(p). This sequence splits.

e Splitting implies B = K & C'. Under this isomorphism, let p correspond to the projection

pec: KoC— C.

e Given f : P — C, define f' : P - K& C by f = (0,f), where 0 : P — K is the zero
morphism.

o Let f : P — B correspond to f’ via the isomorphism B = K ¢ C.

e Then ~ B
pof=pcof =pco(0,f)=/f

e We have found the required lifting f, so P is projective.

Thus, an abelian category is semisimple if and only if all of its objects are projective.

5.14 Locally finite abelian k-linear category

An object A of an abelian category has finite length if there is a Jordan-Hoélder series of finite length
0=4 -4 = =4, 1>4,=A
of monomorphisms such that each object
Aji1/A; = coker(4; — Aiq1)

is simple.

If S is a simple object, we say that a given Jordan-Hdélder series contains S with multiplicity m
if the number of values of i for which A;1/A; is isomorphic to S is m. The Jordan-Hélder theorem
states that all Jordan-Holder series of a given object have the same length, and more particularly,
that any two Jordan-Holder series contain any simple object with the same multiplicity. We denote
[A:S] :=m.

Let k be a field. An abelian k-linear category A is locally finite if:

1. all Hom4(X,Y) are finite-dimensional k-vector spaces,

2. every object has finite length.
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5.15 Finite abelian k-linear category

Let k be a field. A locally finite abelian k-linear category A is finite if:
1. there are finitely many isomorphism classes of simple objects,

2. every simple object has a projective cover, that is, for every simple object A there exists
a projective object P4 and an epimorphism w : P4 — A which is universal: any other
epimorphism p : P — A from a projective object P factors through =, i.e., there exists an
epimorphism p’ : P — P4 such that p = mop'.

2. can be replaced for the simpler condition that for every object X there exists an epimorphism
P — X from a projective object. This is usually called "having enough projectives”. This also
means that every object has a projective presentation.

It is a theorem by Deligne that any finite abelian k-linear category is equivalent to the category
Modﬁd of finite-dimensional A-modules for some finite-dimensional algebra A. More precisely, the
given finite abelian k-linear category determines the Morita equivalence class of A (recall that two
algebras are Morita equivalent if their categories of modules are equivalent).

5.16 A finite abelian category has a projective generator

Proof. Let A be a finite abelian category over a field k. By definition, A is
e k-linear and additive,
e of finite length (every object has a finite composition series),
e Hom-finite: dim; Hom(X,Y) < oo for all X, Y € A,
e and every simple object has a projective cover.

Step 1: Finitely many simples and indecomposable projectives.
Let {S1,...,S,} be a complete set of representatives of the simple objects of A (up to isomor-
phism). Each simple S; has a projective cover P; — S;, which is indecomposable.
Step 2: Every indecomposable projective is one of the F,.
Let @ be an indecomposable projective in A. Since A is finite length, () has a simple quotient
S. Let Pg — S be the projective cover of S. By projectivity of @, the surjection Pg — S lifts to a
morphism Ps — @Q. Since both Pg and @ are indecomposable and the map is nonzero, it must be
an isomorphism. Hence ) = Pg.
Thus the set {P,..., P,} gives all indecomposable projectives up to isomorphism.
IN OTHER WORDS: THERE IS A BIJECTION BETWEEN SIMPLE OBJECTS AND IN-
DECOMPOSABLE PROJECTIVE OBJECTS (and there are finitely many of them)
Step 3: Constructing a projective generator.
Consider the direct sum .
P:=EpPnr.
i=1

e P is projective because finite direct sums of projectives are projective.
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e P is a generator: for any object X € A, take a composition series

0=XoCXiC---CXp=X, X;/X;1= i)
For each simple subquotient S;,, the projective P;; surjects onto it. By induction on the
length of X, one can construct an epimorphism

m
@ Pl-j —- X.
j=1
Since each P;j; is a summand of P, X is a quotient of a direct sum of copies of P.

Conclusion: The object P is a projective generator of A. O

5.17 Left/right exactness, adjointness and (dual) representability

Let F,G : C — D be linear functors between finite linear categories. The following statements are
equivalent:

(L1) F is left-exact.

(L2) F admits a left adjoint.
Likewise, the following are equivalent:
(R1) G is right-exact.

(R2) G admits a right adjoint.

Moreover, for D = vect, in addition the following statements are equivalent to (L1) and (L2) and
to (R1) and (R2), respectively:

(L3) F is representable, i.e. F' = Home(c, —) for some ¢ € C.

(R3) G is ‘dually representable’, i.e. G = Hom¢(—,d)* for some d € C.

5.18 Deligne product

Given k-linear abelian categories C, D, their Deligne product (if it exists) is another k-linear abelian
category C e D together with a bilinear right exact functor

CxD—=CeD

that induces equivalences
Rex[C @ D, £] ~ Rex|C, D; &]
for all abelian £. The Deligne product might not always exist.

5.19 Kelly product

Given k-linear finitely cocomplete categories C, D, their Kelly product (if it exists) is another k-
linear finitely cocomplete category C X D together with a bilinear right exact functor (i.e., finite
colimit preserving)

CxD—-CXD

that induces equivalences
Rex[C XD, €] ~ Rex|C, D; &]
for all £ finitely cocomplete. It always exists. One can realise

C XD C Lex|[C, DP; k-Mod].

31



Example: If R,S are k-algebras, the functor
Rk : R—l\/lodf X S—I\/Iodf — (R Rk S)—Modf

induces an equivalence

(R Rk S)—Modf ~ R—Modf X S—Modf.

Facts: (Franco, EGNO)

(1) If C, D are abelian, then C X D is abelian if and only if C @ D exists, and in that case:

CXD~CeD.
(2) If C, D are locally finite abelian k-linear categories, then so is C X D.

Moral: Among locally finite abelian k-linear categories, the Kelly and Deligne products exist,
and they coincide. This is called the Deligne-Kelly tensor product.

Further properties:
(1) Homegp(X X X' Y XY') 2 Home(X,Y) ® Homp (X', Y);
(2) A bilinear biexact functor C x D — & induces an exact functor C XD — &;

(3) Right exact functors F; : C; — D; between locally finite abelian linear categories give rise to
a right exact functor:
FI&ngcl&Cz —)Dlﬁpg.

5.20 (Multi)tensor, fusion and ring categories
Let C be a locally finite abelian k-linear monoidal category.
e C is a multiring category if ® : C x C — C is bilinear and biexact.
e If End(1) =k, it is a ring category.
If C is in addition rigid:
e multitensor if ® is bilinear on morphisms,
e multifusion if it is finite semisimple multitensor,
e tensor if multitensor and End(1) =k,

e fusion if multifusion and End(1) = k.
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Properties:

1. In a multiring category with left (resp. right) duals, the corresponding dualisation functor is
exact.

2. A finite ring category with left duals is a tensor category.

3. If P is projective in a multiring category and X has a left (resp. right) dual, then P ® X
(resp. X ® P) is projective.

4. In a multiring category with left duals (e.g., multitensor),
1 € C is projective iff C is semisimple.

5. In a ring category with left duals (e.g., tensor), 1 € C is simple; in general in multiring with
left duals it is semisimple.
6. The Deligne-Kelly product of (multi)tensor, (multi)fusion, or (multi)ring categories is of such
type.
5.21 The distinguished invertible object (take 1)

TO BE FINISHED
Let C be a rigid monoidal category. An object X € C is invertible if the evaluation and
coevaluation maps give isomorphisms

X*@X=1 and 12X X"

Example: In the category Rep(G), the 1-dimensional representations are invertible.

5.22 Unimodular finite tensor category

A finite tensor category is unimodular if its distinguished invertible object « is the unit 1.
Example: In the category Rep(G), the 1-dimensional representations are invertible.

5.23 Indecomposable projective objects in a finite tensor category

Let C be a finite multitensor category over a field k. Let {X,};cs be the set of isomorphism classes
of simple objects in C, and let P; be the projective cover of X;.
Then for any object Z € C, we have the following isomorphisms in C:

L. P@Z =@, e N -7 : Xj]P%

2. 2@ P = @ per NijilZ : X1

where:

e [Z : Xj] is the multiplicity of the simple object X; in the Jordan-Holder series of Z.

e j* and *j denote the indices for the right dual X and the left dual *X;, respectively.

o N :=[X,®Xy: X.]is the fusion coefficient, i.e., the multiplicity of X, in the Jordan-Hélder

series of X, ® Xp.
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Detailed Proof of Formula 1 We want to prove that:

P®Z= P Nj ;. [Z: X;]P.
J,kel

Step 1: The object P, ® Z is projective.

In a tensor category, the tensor product of a projective object with any other object is projective.
Since P; is projective by definition, the object P; ® Z is also a projective object in C.

Step 2: Decomposition of projective objects.

Every projective object in a finite abelian category (like C) can be uniquely decomposed (up
to isomorphism and permutation) into a direct sum of indecomposable projective objects. The
indecomposable projectives in C are precisely { Py }rer-

More precisely, there is a bijection between simple objects of C and indecomposable projective
objects of C, the bijection being X; — P; and P — P/rad(P).

Therefore, we can write an isomorphism in C:

P® Z =@ mpP,
kel

where my, are non-negative integers representing the multiplicity of Pk in the decomposition. Our
goal is to find an explicit formula for my.

Step 3: Calculating the multiplicities my.

The multiplicity my can be determined by computing the dimension of the space of morphisms
from the object to the corresponding simple object Xj. This relies on the property of projective
covers that Home (P, Xj) = k if | = k and is 0 otherwise. More generally:

dimHOch (@ mlPlan> Zml dlmHOch B;Xk Zml(Slk = My
lel lel lel

Therefore, we can calculate my, as:
my, = dim Home (P ® Z, Xj)

Step 4: Using Tensor-Hom Adjunction.
The tensor functor — ® Z has a right adjoint, which is — ® Z*, where Z* is the right dual of Z.
This gives the following natural isomorphism of vector spaces (the ”adjunction of rigidity”):

HomC(Pi ® 7, Xk) = HOl’nc(Pi,Xk & Z*)
Combining this with the previous step, we get:
mg = dimHomC(Pi,Xk X Z*)

Step 5: Using the Defining Property of Projective Covers.
The projective cover P; of the simple object X; has the fundamental property that for any
object M € C:
dim Home (P;, M) = [M : X|]

This means the dimension of the Hom space from P; to M counts the number of times the simple
object X; appears in the composition series of M.
Let’s apply this property with M = X ® Z*:

my = [ X ® 2%+ X]

as desired.
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5.24 The distinguished invertible object (take 2)
TO BE FINISHED

5.25 Nakayama functors

TO BE FINISHED

5.26 The canonical coend A

TO BE FINISHED
XeC XeC
A / XK X / XXVX

5.27 Self-duality of A

TO BE FINISHED

Three different ways to see that A is self-dual:

1- the def of the distinguished invertible object

2- the lemma something in Shimizu’s papepr

3- when the category is unimodular and pivotal, then the right Nakayama functor is nat iso-
morphic to the identity, and by FSS 3.52 we have

XeC
/ XXX = XX X.
XeC

Since the duality functor is an equivalence it preserves all limits and colimits and then applying
(—)Y Kid we get
XeC
/ XK X = XX X.
XeC
We conclude as

XecC v XeC
AV;</ XV®X> = XVWKR XY XV®X%/ XRX=A
XeC XeC

5.28 Modified traces
TO BE FINISHED

5.29 Spherical finite tensor category a la Douglas-Schommer-Pries-Snyder

A pivotal finite tensor category is spherical (according to Douglas-Schommer-Pries-Snyder) if it is
unimodular, ie o = 1, and the trivialisation (—)"VVY 2 Id coming from the Radford isomorphism
coincides with the trivialisation (—)VVVY = (—=)¥V 2 1d induced by the pivotal structure.

This notion of sphericality is related to the sphericality in terms of quantum traces from Section
4.6 only in the semisimple case. Beyond semisimplicity, it is an entirely different notion. Most re-
markably, sphericality, even in the non-semisimple situation, can be perfectly characterized through
traces if one uses modified traces instead of quantum traces [SS21, Theorem 1.3].
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5.30 Eilenberg-Watts theorem
If A, B are finite abelian categories, then there is a zig-zag of equivalences
Lex(A, B) ~ A’ X B ~ Rex(\A, B)
TO BE FINISHED

6 Module categories

6.1 Definition

Let C = (C,®,1,a,l,7) be a monoidal category.
A left module category over C is a category M equipped with:

e a bifunctor ® : C x M — M,
e a natural isomorphism (module associativity constraint)

mxym: (X@Y)oM = X (Y ®M),

e a natural isomorphism (unit constraint)

Iyr: 1@ M =5 M,

satisfying two coherence conditions:
¢ Pentagon axiom: the diagram for all XY, Z € C, M € M,

ax,y,z®idy
REEE

(XeY)®2Z)eM Xo¥ez)eM
Xe(Yez)oM)
IXEMIM, X @ (Y © (Z© M)
=(X®Y)®(Z2eM)

MX\Y,Z@M ((X®Y) ®Z) @ M

MX Y®Z,M
R

e Triangle axiom: for all X € C, M € M,

mx,1,M

(X®1) M 222 X @ (1o M) X2 x o p

equals the map
(X®1) oM X8, x o

This categorifies the notion of a module over a monoid.
There is a bijective correspondence between:

e left C-module category structures on M, and

e monoidal functors F': C — End(M),

where End(M) is the monoidal category of endofunctors of M with composition.
If C is rigid, then for all X € C, M, N € M there is a canonical isomorphism:

Homu(X* ® M, N) =2 Hompum (M, X @ N)

natural in all variables.
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6.2 (C-module functor

Let M, N be two left C-module categories. A C-module functor is:
e a functor F': M — N,

e a natural isomorphism
SX,M - F(X@M) ;X@F(M),
natural in X € C, M € M, such that for all X,Y € C, M € M the diagram

(mX,Y,M)

F(XeY)o M) L

SX,YQM
e

F(X® (Y ®M)
XQF(Y ®M)
XEMM, X & (Y @ F(M))
=(X®Y)® F(M)
SXOYM X @ Y) ® M)

commutes.

6.3 Module category over a multitensor category

e A module category over a multitensor category C is a locally finite abelian category M
over a field k, with a C-module category structure where the action functor

K:CxM—=>M
is bilinear and exact in the first variable.

e Let Lex(M, M) denote the category of left exact endofunctors of M. Then there is a bijection
between C-module structures on M and tensor functors

F:C — Lex(M, M)

e The direct sum My & My of two C-module categories is again a C-module category.

e A C-module category M is indecomposable if it is not equivalent to a nontrivial direct sum
of module categories.

Example: If C is a multitensor category, then C is a C*™ := C X C°P-module category with

(XRY)®Z=X0ZxY.

6.4 Finite module categories

TO BE FINISHED

6.5 Balanced Deligne product
TO BE FINISHED
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6.6 Relative Serre functors

TO BE FINISHED

6.7 Pivotal module categories

TO BE FINISHED

7 Cyclic and modular operads

7.1 Classical operads and their algebras

A symmetric operad formalizes operations with multiple inputs and a single, distinguished output.
The underlying combinatorics are those of rooted trees.

Let V be a symmetric monoidal category. A (uncolored) symmetric (or classical or ordinary)
operad P in V, or a V-valued operad, is a collection of {P(n)},>0 of objects in V endowed with
the following structures:

1. A Right Symmetric Group Action: For each n > 0, there is a right action of the
symmetric group &,, on P(n).

2. An Identity Element: There exists a distinguished map 1: 1 — P(1).

3. Composition Maps: There are arrows in V
) ® ® Pki) = Plky+ -+ kn),

(equivalently , for all integers n, m > 0 and each ¢ € {1,...,n}, there are linear maps, known
as insertion maps:

0;: P(n) @ P(m) = P(n+m—1)

These structures must satisfy axioms of associativity, unitality, and equivariance with respect to the
symmetric group action. For instance, associativity requires that for p € P(n),q € P(m),r € P(k):
(pojr)oiq=(poiq)ojym-r for1<i<j<n
poi(qojr)=(poiq)oiyj—1r for1<i<n,1<j<m
Let P = {P(n)}n>0 and Q@ = {Q(n)},>0 be two symmetric operads in the same symmetric

monoidal category V (for instance, the category of vector spaces, Vecty).
A morphism of operads ¢ : P — @ is a collection of morphisms, one for each arity n > 0:

®,: P(n) = Q(n)
This collection of maps must satisfy the following three axioms:

1. Compatibility with Composition: The morphism must respect the operadic composition
maps o;. For any p € P(n) and ¢ € P(m), the following diagram must commute for all
ie{l,...,n}k

P(n) ® P(m) 2E2% 9(n) ® Q(m)

Pn+m—1) %IQ(n—l—m—l)
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This is equivalent to the equation:
Ppim—1(p 0i q) = Pn(p) 0i Pm(q)

2. Compatibility with the Identity: The morphism must map the identity element of P to
the identity element of Q.

B1(1p) = 1o

3. Equivariance: The morphisms must respect the action of the symmetric group S,,. For any
p € P(n) and any permutation o € Sy,:

Py(p-o)=Pu(p)-o
This means the maps ®,, are S,-equivariant.

Let P be a symmetric operad. A P-algebra is an object V together with a collection of arrows

(structure maps) for each n > 0:
Yo : P(n)@VE" -V

These maps must be compatible with the composition, identity, and group action of P. Compat-
ibility with composition, for instance, means that for any p € P(n) and ¢ € P(m), the action of
the composite operation p o; ¢ is the composition of the individual actions. This is equivalent to
requiring that the maps {v,} constitute a morphism of operads v : P — Endy, where Endy is the
endomorphism operad of V' with Endy (n) = Hom(V®", V). More below:

The Endomorphism Operad. Suppose that V is a closed symmetric monoidal category, aka
enriched over itself. For any object V in V., one can construct the endomorphism operad,
denoted Endy .

e Its space of n-ary operations is Endy (n) := Hom(V®" V), the space of all arrows from n
copies of V to V.

e Its composition is the standard composition of functions.

Definition of a P-Algebra. An algebra over an operad P (or a P-algebra) on an object V'
is, by definition, a morphism of operads:

®: P — Endy

The data of this morphism is a collection of maps ®,, : P(n) — Hom(V®™ V). This is precisely
the structure of a P-algebra: for each abstract n-ary operation p € P(n), the morphism assigns a
concrete multilinear map ®,,(p) on V. The axioms for an operad morphism then guarantee that this
assignment is compatible with composition, the identity, and permutation of inputs, as required
for an algebra.

Operads in V and operad morphisms form a category Op(V).

A more general definition of a P-Algebra. In the previous definition, what we have really
used for it to make sense is that ) is enriched over itself and then that the homs are objects
in V. But one could go a step further and consider an arbitrary symmetric monoidal category
C enriched over V. That is, if X is an object in C, define the endomorphism operad (in V) as
Endx(n) := Hom(X®", X) (these are objects in V by the enrichment).

Then for an operad P in V, a C-valued P-algebra is an operad morphism

P — Endx.
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Main example. If V = Cat or Grp the category of categories or groupoids, and C is a (2,1)-
category (eg Rex' or LFP,), then for some object (category) A in C we can consider the operad
End 4 and a C-valued P-algebra P — End 4.

7.2 Classical cyclic operads and their algebras

A cyclic operad removes the distinction between inputs and outputs, treating all connection points
(punctures) symmetrically. The combinatorics are those of forests (graphs without cycles).

A cyclic operad C is a collection of vector spaces {C(n)},>o where each C(n) is endowed with a
right action of the symmetric group S,,+1. This extended group action allows the "output” (labeled
n+ 1) to be permuted with the "inputs” (labeled 1,...,n). The composition maps can be defined
for any pair of punctures on two distinct operations:

0ij 1 C(n) ®C(m) — C(n+m)

Alternatively, a cyclic operad can be defined as a symmetric operad equipped with a compatible
family of non-degenerate symmetric bilinear forms on its spaces, satisfying a cyclicity condition.

An algebra over a cyclic operad C is a vector space V that is an algebra over the underlying
symmetric operad of C and is additionally equipped with a non-degenerate symmetric bilinear
form (—,—) : V.® V. — k. This structure must satisfy a cyclicity condition relating the operad
action to the bilinear form. For any ¢ € C(n) and vy,...,vp41 € V:

(M) (V15 vn), vnt1) = (mle- o) (vas -, Upt1), 1)
where o is the cyclic permutation (1,2,...,n 4+ 1). A key example is a commutative Frobenius
algebra.
7.3 Classical modular operads

A modular operad introduces the final layer of complexity by allowing self-composition, which
creates loops. The underlying combinatorics are those of arbitrary graphs.

A modular operad M, as defined by Getzler and Kapranov, is a collection of vector spaces
indexed by a genus g > 0 and a number of punctures n > 0:

{M(g, n)}(g,n)€N2 such that 2g—24+n>0
This collection is equipped with:
1. A Right S, Action on each M(g,n).
2. Composition Maps of two types:
¢ Gluing of distinct components:
o: M(g1,n1) @ M(g2,n2) = M(g1 + g2,n1 + ng — 2)

This map connects a puncture from an operation in M(gy, n1) with one from an operation
in M(g2,n2).
e Self-composition (contraction):

o: M(g,n) > M(g+1,n—2)

This map connects two distinct punctures on the same operation, thereby increasing the
genus by one.
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These maps must satisfy a set of coherence axioms ensuring that the result of a complex composition
is independent of the order of elementary steps.

An algebra over a modular operad M is a Zx>g-graded vector space A = @ 930 Ay equipped
with structure maps that are compatible with the operad’s composition rules. For an operation
m € M(g,n), the corresponding structure map is a multilinear map of the form:

V(m) : Ahl ® T ® Ahn - Ag+h1+“'+hn

This structure must be compatible with both types of composition in M. To realize the self-
composition maps of the operad, the spaces A, are typically required to be finite-dimensional,
which allows for the definition of trace maps. The entire structure provides an algebraic formulation
for systems like Topological Quantum Field Theories (TQFTs), where the grade g of the algebra
corresponds to the genus of the underlying surfaces.

7.4 Ordinary, cyclic and modular operads a la Costello-Miiller-Woike

(Following Miiller-Woike)

In [Cos04] Costello gives a very efficient description of operads, cyclic operads and modular
operads based on different categories of graphs. We will adopt this description and therefore briefly
recall the most important definitions: A graph consists of a set H of half edges and a set V of
vertices together with a map H — V and an involution ¢ : H — H specifying how half edges are
glued together. The orbits of the involution ¢ are the edges of the graph. Fixed points of ¢ are
called external legs (legs, for short). We denote by Legs(I') the set of external legs of a graph I'.
We may realize a graph I" as a topological space |I'| with the vertices of I' as the 0-cells and the
edges of I" as the 1-cells. A corolla is a graph with one vertex and only external legs. Often we will
denote a graph as a pair I' = (V| H) of the set of vertices and the set of half edges suppressing all
other parts of the structure in the notation.

Let ' = (V,H) and I” = (V', H') be graphs. A morphism of graphs consists of maps V' — V'
and H — H’ which are compatible with the graph structure in the obvious way.

Given a graph I" we can form a new graph v(I') by cutting open all internal edges. Formally,
this replaces the involution on the half edges by the identity map. We can also form a graph mo(T")
by contracting all internal edges. Below a pictorial presentation of these operations is given:

S X

FQ(F)

The category Graphs has as objects graphs which are finite disjoint unions of corollas. A
morphism ~; — 79 is given by an equivalence class of a graph I' together with isomorphisms
¢1 71 — v(I) and @3 : v2 — mo([); note that here ¢ and ¢ are morphisms of graphs in the
above sense, but not morphisms in the category Graphs (which is named afters its morphisms).
Two such triples (T, ¢1, ¢2) and (IV, ¢, ¢,) are equivalent if there exists an isomorphism ¢ : I' — I”
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satisfying ¢} = v(¢) o ¢1 and ¢2 = m () o ¢4. The composition I'y o I'y is defined by replacing the
vertices of I'y by the graph I'y, see below:

We denote by Forests the subcategory of Graphs whose objects are those objects of Graphs which
do not contain a corolla with zero legs and whose morphisms are forests, i.e. disjoint unions of
contractible graphs.

Finally, we define the category RForests of rooted forests: A rooted graph is a graph I' equipped
with a section s : V(m(I')) — Legs(I') of the obvious map Legs(I') — V(mo(I')), i.e. in each
component of I' we distinguish an external leg that we refer to as the root. Morphisms of rooted
graphs are morphisms of the underlying graph which are compatible with the specified sections.
Note that a rooted forest I" induces the structure of a rooted graph on v(I') by declaring for every
vertex the edge in the direction of the root of I' as the root of the vertex in v(I'). The category
RForests is defined just like Forests with objects and morphisms replaced by their rooted version.
There is a functor RForests — Forests which forgets the root.

We assume some familiarity with the theory of symmetric monoidal bicategories; we refer e.g.
to [SP09, Chapter 2] for a detailed discussion and to [Lei98] for a short introduction (however
without the treatment of monoidal structures). In particular, we rely on the following notions:
By a bicategory we mean a three-layered categorical structure with objects, 1-morphisms and 2-
morphisms (sometimes also called 0-cells, 1-cells and 2-cells) in the weak sense. A morphism
between bicategories (sometimes also referred to as (weak) 2-functor) will just be called functor.
Symmetric monoidal functors between symmetric monoidal bicategories are to be understood in a
strong (not in any kind of lax) sense unless otherwise stated. In particular, a symmetric monoidal
functor between symmetric monoidal bicategories comprises various sorts of coherence data subject
to coherence conditions. We will briefly illustrate this after the next definition.

Let M be a symmetric monoidal bicategory. An operad / cyclic operad | modular operad in
M is a symmetric monoidal functor

O : RForests / Forests / Graph — M

where we consider RForests / Forests / Graph as a symmetric monoidal bicategory with only trivial
2-morphisms. See [MW, page 9] to see the equivalence with the classical definitions.

Let us emphasize that this defines operads without an operadic identity. However, all operads
appearing in this paper have operadic unit, and it will be important to correctly keep track of
those.
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7.5 The correspondence between groupoids and 1-homotopy types

A 1-homotopy type is a topological space with 7, (X, z¢) = 0 for all basepoints zy € X. A connected
1-homotopy type is an asphereical space, aka an Eilenberg-MacLane space.
There is a diagram of categories and functors that we explain below:

B

Cat —Y¥ sSet i> Top®™"

-
Gpd Kan Top®™W"
K — K

w

II

Here

N is the nerve. It is a fully faithful functor.

| — | is the geometric realisation functor.

e Sing is the singular functor; Sing(X) is the simplicial sets with Sing(X), the set of singular
n-chains.

e II; is the fundamental group of a Kan complex.
e B (defined as the composition) is the classifying space functor.

e II is the fundamental groupoid functor.

The main result is that up to homotopy we have that the the Sing - | — | adjunction induces an
equivalence

| — | : Ho(Kan) ~ Ho(Top®") : Sing

The key point is that restricting (composing) to groupoids induces an equivalence
B : Ho(Gps) ~ Ho(TopS}") : II

In particular this means that a groupoid is the same thing as a 1-homotopy type; and a con-
nected groupoid the same thing as an aspherical space.

A way to see this equivalence is the following: if C is a groupoid, BC = |NC| is a disjoint union
the K(m,1)’s. This is because every groupoid is a disjoint union of its connected components (a
groupoid is connected is every object is connected through a morphism to every other object). Now
C = II;C; with each C; connected. Now for every i take an object X; € C;, and let G; be the full
subcategory on that only object. That is, G; is a 1-object groupoid aka a group, and the inclusion
G; < C; is an equivalence for all 7 as C; is connected. So C ~ II;G;. It turns out that B commutes
with II so
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7.6 The (framed) little disc operad F, and fE,
First I need to recall a few things:

e The (ordered) configuration space of a given space X is

Conf, (X) := {(z1,22,...,2,) € X" : 2; # x; for all i # j}.

e The symmetric group &,, naturally acts on Conf,,(X). The unordered configuration space of
X is
UConf, (X) := Conf,(X)/6,,
ie this is the space of sets of n distint points.
e We have (more or less by def) isomorphisms
PB, = m1(Conf,(D%) , B, = (UConf,(D?)),
where B,, and PB,, are the braid and pure braid group on n strands, respectively.

e These two spaces Conf,(D?) and UConf,(D?) are aspherical by a classic theorem by Fox-
Neuwirth. Therefore (as they are connected)

B(PB,) ~ Conf,(D?) ,  B(B,)~ UConf,(D?).

There is a framed version of this story
e The (ordered) framed configuration space of a given manifold M is
Contf (M) := {((1, /1), (©2, f2), - (2n, f)) € (Fr(M))" | 2 # w for all i # j}
where Fr(M) is the frame bundle of M.

e The symmetric group &,, naturally acts on Confﬁ’"(M ). The unordered framed configuration

space of X is
UConf!" (M) := Conf!"(M)/6&,.

e We have (more or less by def) isomorphisms
PBJ" =~ (Conf/"(D?)) ,  B/" =7 (UConf/"(D?)),

where B,{T and PB,JZT are the framed braid and pure framed braid group on n strands, re-
spectively. That is, we have ribbons instead of strings.

e These spaces are again aspherical and then

B(PB/") ~ Conf/"(D*) ,  B(BJ") ~UConf/"(D?).

The little n-disc operad FE,, is a topological operad (ie an operad in the symmetric monoidal
category of spaces) defined as

Epn(k) := Embyect ([0, 115, [0, 1]™)
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the space of rectilinear embeddings; see Example 1.8 in Heuts-Moerdijk for a precise definition. It
is obvious that this space is isomorphic to Embyq((D™)"* D™) the space of embeddings that are
obtained by a composition of translations and dilatations, and D" is the n-disc.

The framed little n-disc operad fE,, is the topological operad defined as

fE, (k) := Embyg, ((D™)* D")

the space of embeddings that are obtained by a composition of translations, dilatations and rota-
tions. By ...... 27777 .. , the space Embyg,((D™)™¥, D™) is in fact homotopy equivalent to the
space Emb((D™)"* D) of all embeddings.

Key property: Evaluation at the centre induces homotopy equivalences
Embyq((D™)*, D™) — Confy, (D)

and
Embyg, (D™*, D) — Confl"(D").

Upshot: Es(k) and fEy(k) are aspherical spaces, in particular we have
Es(k)~ B(PBy) ,  fEs(k)~B(PB.").

In particular, by the equivalence between connected groupoids and aspherical spaces, we can regard
fEs and Fy as operads in groupoids, not in spaces.

7.7 Disc algebras vs. framed FE,-algebras

I will describe here roughly the (2,1)-categorical version; there is also an oo-categorical ones.

Let Disc,, the symmetric monoidal (2, 1)-category with objects disjoint union of oriented disks
and hom groupoids orientation-preserving embeddings with isotopies, with disjoint union as monoidal
product. If C is a symmetric monoidal (2,1)-category, a disk algebra is a symmetric monoidal
functor Disc,, — C.

There is a framed variant of this story: Disc/” the symmetric monoidal (2,1)-category with
objects disjoint union of framed (=choice of trivialisation of the tangent bundle) disks and arrows
embeddings equipped with a compatibility of framings (see Tanaka’s notes for a precise statement),
with disjoint union as monoidal product. If C is a symmetric monoidal (2, 1)-category, a framed
disk algebra is a symmetric monoidal functor Disc/" — C.

Theorem. The following three pieces of data are equivalent (inducing equivalences of the corre-
sponding categories):

1. A 2-disk algebra in Rex',
2. A Rex-valued framed Es-algebra,
3. A balanced monoidal category in Rex'.

(Rexf can be replaced by something more general like LF'P,).

The equivalence between 1 and 3 is explained with detail in Theorem 3.2 of Brochier’s notes
”Factorisation homology of braided tensor categories”: for a functor F' : Disc,, — Rexf then A :=
F(D?) is a balanced monoidal category.
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I want to focus on the equivalence 1 - 2. The key word is envelope construction which is
nothing but the adjunction between operads and PROPs (= symm mon cat gen by a single object)

F : Operads 2 PROPs : U

and more concretely how to construct a symmetric monoidal category out of an operad. One builds
the “free PROP” aka envelope of an operad putting together the trees; the right adjoint uses simply
one output, so that’s kinda a forgetful.

In the groupoid-valued setting, the adjunction reads

F : Op(Gpd) = (2,1) — PROPs : U

Obviously the endomorphlsm operad End nd can be viewed as the forgetful Endy4 = U (m) (re-

striction) of a (2,1)-PROP EndA with EndA(n m) = Rex' (A®", A¥™). The adjunction says that
there is an equivalence

Hompgrop(F(fE>), m) ~ Homgp,(FE2, End 4).

The RHS are precisely Rexf-valued framed Es-algebras. Now the point is that the LHS are exactly
the same as framedﬂse algebras in Rex', ie symm mon functors Disco — Rex’. Modifying
the target is easy: End4 is a full subcat of Rex’ so it changes nothing as Discy is generated by
a single object (namely the 2-disc). So everything amounts to showing that F(fE2) ~ Discy as
(2,1)-categories.

Here one has to remember from the previous subsection that

fEs(n) = Embia,((D*)™, D?) ~ Emb((D*)""", D?),

so viewed in groupoids, one applies by the correspondence explained above the fundamental groupoid
functor,
fEy(n) = HEmb((D?)1", D?)

as a groupoid-valued operad. If we then consider the free (2,1)-PROP, that is, the thing obtained
by concatenating trees, then we get that

F(fE)(n,m) = IIEmb((D?)!" (D?)1m),

that is Discsy.

There is also an “unframed” version of this theorem:
Theorem. The following three pieces of data are equivalent (inducing equivalences of the corre-
sponding categories):

1. A framed 2-disk algebra in Rex',
2. A Rex-valued Es-algebra,

3. A braided monoidal category in Rex'.
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7.8 The cyclic and modular endomorphism operad
(Mostly taken from Woike’s reflection equivariance paper)

Classically, an algebra X over an operad O is an operad map
O — End X

to the endomorphism operad of the underlying object of the algebra X; recall that Endx(n) =
Hom(X®" X). If X was a vector space for instance, in order to make this endomorphism operad
cyclic (or more genrally modular), ie to exchage a copy of X to the target and the one from the
target to the source, or to pair up two copies of X, we’d need an identification between X and its
dual aka a non-deg pairing in X. We do this next in general (with A instead of X as we’re thinking
of a symm mon bicat).

In order to generalize this to cyclic and modular operads, the endomorphism operad needs to
be made modular (and therefore in particular cyclic). This is done in [MW23a, Section 2] for the
bicategorical case, following the principles of [GK95, GK98, Cos04]: First we recall the notion of a
non-degenerate symmetric pairing x : AKX A — 7 on an object A in a symmetric monoidal
bicategory S with monoidal product X and monoidal unit Z, where

e non-degeneracy means that x exhibits A as its own dual in the homotopy category of S, that
is, there is a coevaluation object A : 7 — AKX A that together with k satisfies the zigzag
identities up to isomorphism.

e and symmetry means that s is a homotopy fixed point in S(AX A,7Z) with respect to the
Zo-action coming from the symmetric braiding of S.

Thanks to the non-degenerate symmetric pairing, we can define a symmetric monoidal functor
End 4 . : Graphs — Cat

sending a corolla T to the morphism category
End . (T) := S(ARLees(D) T)

from the unordered monoidal product A®-e&(T) of A over the set Legs(T) of legs of T to the
monoidal unit Z € §. This Cat-valued modular operad is the modular endomorphism operad of
(A, k) and denoted by End 4.

If O is a Cat-valued modular operad O : Graphs — Cat, an S-valued modular O-algebra is now
defined as an object A in & with a non-degenerate symmetric pairing s plus a map O — End 4.
of modular operads (aka a symm mon nat transf). A cyclic algebra is defined analogously. Both
cyclic and modular algebras over a fixed cyclic or modular operad, respectively, with values in a
symmetric monoidal bicategory form themselves bicategories in which all morphisms turn out to
be invertible, i.e. they form 2-groupoids [MW23a, Proposition 2.18].

Unpacking the definition Let us partly unpack the definition of a Rexf-valued modular O-
algebra (all of this is worked out in detail in [MW23a, Section 2.5] where the dual case of Lex/
is treated): It has an underlying object A € Rex/, i.e. a finite category, and a non-degenerate
symmetric pairing x : AX A — vect. By virtue of right exactness, we have

Rexf (AN A, vect) ~ (AKX A)% K vect ~ AP K A% ~ Rex' (A, AP)
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(here we have used the Eilenberg-Watts theorem) ie x determines an equivalence D : A — A via
k(X,Y) = A(X, DY)*, and the symmetry of x induces an isomorphism D? ~ id 4. The coevaluation
is a right exact functor A : vect - AKX A and is hence (again by the Eilenberg-Watts theorem) an
object in AKX A given by the end
A= DX R X;
XecA

we refer to [FSS20] for an introduction to (co)ends in finite linear categories. Moreover, the structure
of a modular O-algebra on A provides us for each operation o € O(T) for a corolla T" with a right
exact functor A, : A®Lees(1) — vect. If T € Graphs is not connected, i.e. T = [],.; T(l) with
corollas T'(1), then to 0 = (o)ier. € O(T) ~ [l;e, O(T(1)) the modular algebra associates the
family of right exact functors (Ao, )iecr; it gives us also a right exact functor @, A, — vect
(by abuse of notation, we will not distinguish between these two objects). The data of a modular
algebra includes also the compatibility with composition: Suppose that a morphism I : T — T’
glues two legs (of T') together; that is, T" is like the leftmost I"” picture above if the legs belong to
different corollas, or T' is the result of taking a given corolla T and glue two legs (and then T” is
just T" minus the two legs that were glued).

Denote by o' € O(T") the image of some o € O(T) under the operadic composition O(T) :
O(T) — O(T"). Then we obtain an isomorphism of right exact functors between A, and A,, but
with A inserted into the two arguments of A4, corresponding to the legs that are glued together,
ie.

Ay = Ao N LAY L) (2.2)

with Sweedler notation A = A’ K A” for the coevaluation object (as usual, the notion does not
imply that A is a pure tensor). In some contexts, (2.2) is called ezcision.

7.9 Classifications of cyclic and modular algebras
The classical result:
Alg(f s, Rex) ~ balanced monoidal categories in Rex'.
The intermediate result:
CycAlg(As, Rex) ~ ModAlg(OSurf, Rexf) ~ pivotal GV-categories in Rex'.

(for these we have used
OSurf|,—g >~ As , Hdby,_o ~ fE>

The classification of Rex-valued cyclic framed Es-algebras:

CycAlg(fEs, Rexf) ~ ModAlg(Hdby, Rexf) ~ ribbon GV-categories in Rex'

(a modular Hdby-algebra is called an ansular functor).
We also have
Surf|g:0 >~ fEQ,

ie fE5 is the “cyclic operad of genus zero surfaces”

7.10 Modular functors

Cyclic framed Fs-algebra = genus zero modular functor.
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8 Factorisation homology

8.1 Definition

Disc —A 5 Rexf

[ 2)
A
Surf

8.2 Properties

e We have [, A ~ A, the equivalence being induced by any of the universal arrows A —
f p2 A coming from the description of the homotopy colimit. This is true by construction:
factorisation homology being a homotopy left Kan extension along an embedding means that
the diagram (2) is actually commutative up to isomorphism. Since the image of the 2-disc
under A is A as category, this yields the equivalence.

8.3 Quantum structure sheaf or distinguished object

Factorization homology is a canonically pointed theory in the following sense: for a surface X, the
unique embedding () < ¥ induces a functor

Og:vect:/A%/A.
0 b

This functor produces a distinguished object in fz A, namely the image of the 1-dimensional vector
space, O4 5 := Ox(k), that is called the quantum structure sheaf in ”Integrating Quantum groups”.

Alternatively, O 4 x. can be defined in a different way (up to isomorphism): as the image of the
monoidal unit 1 of A under any of the universal functors A — [, A (a leg of the colimit cone) for
any embedding D? < .

To see that the two descriptions agree, one argues as follows: the first observation is that if
they agree for a given embedding then it is independent on the chosen embedding. Now the second
observation is that it suffices to check this for the disc D?, this is because no matter for what
embedding D? < ¥ we have a commutative diagram of embeddings

0
D — %
since () is initial; and then we get a commutative diagram (up to iso)

vect

PN
Joe A fi A

which means that any embedding D? < ¥ induces a functor i) A= fz A that maps the distin-
guished object to the distinguished object. Therefore it suffices to check that under the equivalence
f p2 A~ A, the distinguished object O 4 p2 corresponds precisely with the monoidal unit of A.
Now the key is that a balanced monoidal category is a different name for a framed Fs-algebra
aka a 2-disc algebra, that is a functor Disk — Rex'. The monoidal unit is given by the canonical
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embedding () — D? inducing a map vect — A which maps the base field to the monoidal unit. By
the commutativity of (2) we have that the functors vect — A and vect — || p2 A must be isomorphic
(up to the equivalence in the target). Ie that O 4 p2 =1 viewed in A.

The same type of argument says that if IT,D? — ¥ is an embedding, with universal functor
ARk fz A, and that embedding factors through a larger disc, ie there is a diagram

11, D?

D2/ \E

then the universal functor A%F — Js A factors through the monoidal product of A, ie there is a
commutative diagram (up to iso)

A —— LA
A

8.4 Moduli algebra

This is Ay, := End(O.4 x). Not to be confused with F 4 := ®End(1) (the reflection equation algebra)
or with ap := ]-"ﬁm where P is a pattern of rank n.

8.5 Skein algebra (categorical version))

This is the endomorphism algebra

SkAlg4(%) := End_4(Oax).

9 Module categories

In this section, we review some categorical notions that will play a major role in the present article.
Without further comment, all categories will be assumed to k-linear over a fixed algebraically
closed field k, that is, enriched over the symmetric monoidal category of vector spaces over k, and
all functors and natural transformations will be assumed to be k-linear as well.

9.1 Finite categories

Following [?], a finite category is an abelian category A such that

(i) the hom-vector spaces are finite-dimensional,
(ii) every object has finite length,

(i)

(iv) A has enough projectives.

there are finitely many isomorphisms classes of simple objects,

It is well-known that an abelian category is finite if and only if it equivalent to the category A-mod
of finite-dimensional modules over a finite-dimensional algebra A. Therefore, a given finite category
determines the Morita equivalence class of a finite-dimensional algebra.
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Recall that abelian categories are finitely (co)complete, that is, they have all finite (co)limits. A
functor F : C — D between abelian categories is left (resp. right) exzact if it preserves finite limits
(resp. colimits). Alternatively, F' is left (resp. right) exact if and only if it preserves kernels (resp.
cokernels). The functor F' is ezact if it is left and right exact.

The following version of the Eilenberg-Watts theorem will be heavily used in the sequel:

Lemma 9.1 ([?, Corollary 2.3]). Let F,G : A — B be functors between finite categories. Then the
following are equivalent:

(L1) F is left exact,

(L2) F is right-adjoint,

and if B = vect the category of finite-dimensional vector spaces, then they are likewise equivalent to
(L3) F is representable, F' = Hom4(X, —) for some object X € A.

Similarly, the following are equivalent:

(R1) G is right ezact,

(R2) G is left-adjoint,

and if B = vect, then they are equivalent to

(R3) G is “dually representable”, G = Homy(—, X)* for some object X € A.

9.2 Finite tensor categories

A finite category A equipped with a rigid bilinear monoidal product with simple unit is called a
finite tensor category [?]. The left and right rigidity induce strong monoidal functors

(_)\/:A_>Aop,rev ’ \/(_):Aop,rev_>A (3)

respectively, which are mutually quasi-inverses. Here for a monoidal category C = (C,®, 1), we

have put
COp — (COp7 ®’ :[l) , Cl'eV — (C7 ®rev7 :H-) , Cop,rev — (COP)I’QV

with X ™Y =Y ® X.
In a finite tensor category A, we have adjunctions (e.g. [?, §2.7])

XV H4Xxe @) 4Xe (=) , @He'X4eXA(-) X (4)

for every object X € A, so by Lemma 9.1 the monoidal product bifunctor ® : A x A — A is exact
in each variable.

9.3 Finite module categories

Let C be a monoidal category. A left C-module structure on a category M is the data of an action
bifunctor & : C x M — M and a family of natural isomorphisms

leM=M , (XeY)eM=2Xo (Yo M)

satisfying a pentagon and triangle axioms similar to those for monoidal categories, see [?, §7.1] for
details (a right A-module category is defined analogously with an action functor © : M xC — M).
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Similarly, an A-module functor F : M — N between A-module categories is a functor together
with natural isomorphisms
FXeM)=ZFX)eM

satisfying similar axioms, cf. [?, §7.2].

If A is a finite tensor category, a finite category M equipped with a A-module structure is
called a finite A-module category if the functors — S M : A — M are right exact for any M € M.
Similarly to the case of finite tensor categories, we have adjunctions

XVe(-)4Xe (=) 4VX e (-) (5)

so again Lemma 9.1 implies that the functor X & —: M — M is always exact for any X € A.

9.4 Internal homs

Let A be a finite tensor category and M a finite A-module category. For every M € M, the functor
— © M has a right-adjoint by Lemma 9.1, that we denote by Hom(M, —) : M — A. By definition,
there are linear isomorphisms

Hom (X & M, N) = Hom_4(X,Hom(M, N)) (6)

natural in X € A4 and N € M. According to the parametrized adjunction theorem [?, Theorem
IV.7.3], the right adjoints in this family of adjunctions assemble in a unique way into a bifunctor

Hom : M® x M — A (7)

such that the isomorphism (6) is natural in the three variables. We call (7) the internal hom
functor. This bifunctor is, just like the hom functor, left exact in both variables: indeed by
definition Hom(M, —) is right-adjoint to — & M, and the isomorphisms
y (5)
Hom e (X¥ © N, M) = Hompaer (N, X & M) = Hom (X & M, N) = Hom4(X,Hom(M, N))

show that Hom(—, N) is right-adjoint to (—)¥ & N. Once again we conclude by Lemma 9.1.
We also record that for objects X, Y € A and M, N € M there is a natural isomorphism

Hom(X © M,Y & N) 2 Y ® Hom(M,N) ® X", (8)

see [?7, Lemma 7.9.4] or [?, (2.15)].
The aforementioned internal homs can be used to equip M with a structure of A-enriched
category: for L, M, N € M there is a composition map

ormn =evy yo(idoevy ) Hom(M, N) ® Hom(L, M) — Hom(L, N) 9)
where ev,, v : Hom(M, N) & M — N is the counit of the adjunction (6). The identity arrow

id,, : 1 —> End(M) := Hom(M, M)

is the morphism corresponding to the isomorphism 1 & M = M under the isomorphism (6). In
particular, for any object M € M, we have that End(M) is an algebra object in A, and for any
N € M the object Hom(M, N) is a right End(M )-module in A with structure morphism given by
(9) with L = M.
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We denote by mod4-End(M) the category of right End(M)-modules in A. It is readily veri-
fied that the monoidal product ® : A x A — A restricts to a functor A x mod4-End(M) —
mod 4-End(M) turning it into a left .A-module category. In particular, Hom(M, —) restricts to a
functor

Hom(M, —) : M —> mod +-End(M)

for which the isomorphisms (8) make it an .A-module functor.

Theorem 9.2 (Monadicity for module categories, e.g. [?, §7.10]). Let M € M. Then the functor
Hom(M, —) : M — mod 4-End(M)

is an equivalence of left A-module categories if and only if M is an A-progenerator. Moreover, such
an object always exists.

In the statement above, an object M € M is an A-progenerator if the functor Hom(M, —) :
M — A is exact and faithful. When the functor Hom(M, —) is only exact (resp. faithful), then
we say that M € M is A-projective (resp. A-generator).

9.5 Deligne product

If C and D are abelian categories, let us denote Lex(C,D) (resp. Rex(C,D)) the category of left
(resp. right) exact functors C — D and natural transformations between them. Because (co)limits
in product categories are computed componentwise, note that if C’ is another abelian category, then
Lex(C x C', D) consists precisely of functors C x C' — D that are left exact in each variable (and
the same observation applies to right exact functors)
Now suppose that A, B are finite categories. Its Deligne product [?, §5] is another such category
AKX B together with a functor
X:AxB— AXB (10)

which is right exact and is universal with respect to this property, in the sense that for any other
finite category & the functor

Rex(A X B, ) —» Rex(A x B, &) , F+— Fol

is an equivalence of categories. It is well-known that the Deligne product of finite categories exists
and is of such kind, and moreover that it coincides with the Kelly product of finitely cocomplete
categories in this case [?].

One can show that the functor (10) is in fact exact. Moreover, by the universal property of the
tensor product of vector spaces, this (bilinear) functor induces a linear map

Hom 4(X,Y) @, Homp(Y,Y’) — Homxs(X K X', Y KY’) (11)
which is in fact a linear isomorphism for all X,Y € A and X' Y’ € B [?, §1.11].

Proposition 9.3 ([?, Proposition 5.17]). Let A, B be finite tensor categories. Then their Deligne
product AX B is again a finite tensor category with monoidal product determined by

(XRY)®(X'RY)=(Xe X)X (Y oY),

monoidal unit 1 X 1 and rigidity determined by (X XY )V = XVKYV.
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9.6 Balanced Deligne product

Let A be a finite tensor category and let M and N be finite right and left A-module categories,
respectively. An A-balanced functor from M x N to a finite category £ is a right exact functor
F: M x N — & together with a family of natural isomorphisms

F(M e X,N)=F(M,X & N)

satisfying the corresponding pentagon and triangle axioms. We denote by Bal4(M x N, &) the
category of right exact A-balanced functors M x A" — £ and natural transformations compatible
with these natural isomorphisms.

If A, M and N are as above, their balanced Deligne product is a finite category MX 4N together
with a functor

Ma: MxN — MEAN (12)

which is right exact A-balanced and is universal with respect to this property, in the sense that for
any finite category £ the functor

Rex(M R4 N,E) = Baly(M x N, E) , F+— Foly

is an equivalence of categories. The balanced product appeared first in [?] in the context of fusion
categories. In the current setup, it is shown in [?, Theorem 3.3] that the balanced Deligne product
always exists, that the functor (12) is in fact exact and moreover that we have the following linear
isomorphism:

Homy v (M K4 N, M' K4 N') = Hom4 (1, Hom(M, M') ® Hom(N, N)). (13)

It will be useful to have a concrete realization of the balanced Deligne product. For M and N
finite right and left .4-module categories, Theorem 9.2 gives us (endomorphism) algebras objects
A, B € A together with equivalences M ~ A-mody and N ~ mod4-B. Then according to [?,
Theorem 3.3], the balanced Deligned product M K4 N can be realised as the category of A-B-
bimodules in A; more precisely, we have that the functor

®: A-mod 4 K4 mods-B — A-mod4-B MXN+— M®N (14)

is an equivalence.

9.7 The distinguished invertible element

Let A be a a finite tensor category. An object X € A is said to be invertible if the evaluation
evy : XV ® X — 1 and the coevaluation coevy : 1 — X ® XV are isomorphisms. In that case,
XV is often denoted as X ~!'. The goal of this subsection is to introduce the so-called distinguished
invertible element of a finite tensor category.

If A is a finite tensor category, its envelope is A" := AK A", which is a finite tensor category
by Proposition 9.3. Note that because of (3), this category is in fact equivalent to A X A°P. The
category A can be viewed as a left A*"V-module category with action functor determined by

(XRY)eZ=X®ZQY.

By the discussion of Section 9.4, we have that A := End(1) € A®*" is an algebra object, that is
usually called the canonical algebra of A. By a result of Shimizu [?, Lemma 4.4], the canonical
algebra can actually be expressed as the coend

XeA
Ag/ XK X. (15)
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The monoidal unit 1 € A is well-known to be an A*"V-progenerator: indeed by (8) we have
Hom(1,—) = (— X 1) ® End(1), which is right exact; and since End(1) # 0, the argument from [?,
Lemma 6.11] tells us that Hom(1, —) is also faithful. Therefore by Theorem 9.2 the functor

m(ly _) : ./4 i> mOdAenv—A

is an equivalence of A®*"-module categories. Furthermore (8) implies that this functor is naturally
isomorphic to the functor (— X 1) ® Aa, where Ax denotes A viewed as a right A-module by
the multiplication of A. By means of the equivalence, there exists an object «, unique up to
isomorphism, such that

(aX1)®AA = (AA)Y. (16)

It can be shown that this object « is in fact invertible [?, §7.18] (see also [?, Lemma 4.3]), and will be
called the distinguished invertible object of A. When a = 1, we will say that A is unimodular. This
name comes from the theory of Hopf algebras: a finite-dimensional Hopf algebra H is unimodular
(i.e., left- and right-integrals coincide) if and only if the category H-mody is unimodular. We refer
the reader to [?, Theorem 4.10] for a list of different characterizations of unimodularity. Note that
when A is unimodular, (16) implies the self-duality of A.

One of the main properties of the distinguished invertible object is that it implements the
quadruple dual by conjugation [?, Theorem 3.3]: we have a natural isomorphism of monoidal
functors

(_)vvvv YR —-® a—l‘ (17)

In particular, if A is unimodular, then (—)VVVY 2 id 4.

9.8 Nakayama functors

Let A be a finite category and X € A. By Lemma 9.1, the representable functor Hom 4(X, —) :
A — vect has a left adjoint that we denote (—) - X. For V € vect, the object V - X is called the
copower and exhibits A as a category tensored over vect or, in the language of Section 9.3, as a
finite module category over vect.

The aim of this subsection is describe the so-called Nakayama functors, that will play a major
role in the sequel. To this end, we first recall the following

Theorem 9.4 ([?, Theorem 3.2]). Let A, B be finite categories. The functors
AP KB — Lex(A, B) , XKXY — Homy(X,—) Y

and
AP X B — Rex(A, B) , X XY — Homy(—, X)*-Y

define a zig-zag of adjoint equivalences,
Lex(A, B) «— A% K B —» Rex(A, B). (18)

The quasi-inverses of these functors can be described as follows: to every left exact functor F, we
assign the coend fXGAX X F(X), and to every right exact functor G, the end erAX XG(X).

The previous theorem can be viewed as a Morita invariant version of the classical Eilenberg-
Watts theorem,

Lex(A-mody, B-mody) ~ B-bimody-A ~ Rex(A-mody, B-mod)
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as B-bimody-A ~ A—modip X B-mody.
Because the identity functor of A is both left and right exact, Theorem 9.4 gives rise to two

canonical functors: the left Nakayama functor N* € Lex(A,.A) and the right Nakayama functor
N" € Rex(A, A). Explicitly,

XeA
Nf—/ AHomA(X, )X N’”—/ Hom4(—, X)* - X. (19)
Xe

Here we have used that the Hom functor (resp. dual Hom functor) preserves ends (resp. coends)
as it is left (resp. right) exact. It follows directly from the zig-zag (18) that we have the following
isomorphisms in A°P X A:

XeA XeA
/ X KNY(X) = XXX X&N’“(X)g/ XXX, (20)
XeA XecA

We remark that the left and right Nakayama functors of a finite category A are very closely related:
the left (resp. right) Nakayama functor of A is precisely the right (resp. left) Nakayama functor of
AP viewed as an endofunctor of A. That is, N%e, 2 (N74)°P and N7y, = (N)°P.

Another remarkable property is that the Nakayama functors of the Deligne product of two finite
categories factor as the Deligne product of the Nakayama functors of the two categories,

Noms NG RNg , Nigp = N RN, (21)

see [?, Proposition 3.20].

In the sequel it will be relevant to obtain a trivialization of the right Nakayama functor. To this
end, recall from [?] that given a finite category A and an endofuctor F' : A — A, a right F'-twisted
Calabi- Yau structure on A is a family of natural isomorphisms

Hom4(X,Y) =2 Hom (Y, F(X))*.

If F = idg we will refer to it as a Calabi-Yau structure on A. By a (right F-twisted) projective
Calabi-Yau structure on A we will mean a (right F-twisted) Calabi-Yau structure on Proj.A, the
subcategory of projective objects of A.

Lemma 9.5. Let A be a finite category. Then A admits a projective Calabi-Yau structure if and
only if the right Nakayama functor admits a trivialization N™ = id 4.

Proof. By [?, Corollary 2.3], any finite category A is a right N"-twisted projective Calabi-Yau
category. Because A4 admits a projective Calabi-Yau structure, by the (enriched) Yoneda lemma
and the fact that the hom-spaces are finite-dimensional, we obtain a natural isomorphism N‘T’Pr ojA =
id 4| proj.4- This trivialization lifts to a trivialization N" = id 4 as both functors are right-exact and
A has enough projectives. This demonstrates the necessity and the sufficiency follows directly from
[?, Corollary 2.3]. O

We say that a finite category A is Frobenius (resp. symmetric Frobenius) if A is equivalent to the
category A-mody of finite-dimensional left A-modules for a Frobenius (resp. symmetric Frobenius)
algebra A. Frobenius categories are also called quasi-Frobenius [?] or self-injective [?], and can
be equivalently defined as those finite categories for which the classes of injective and projective
objects coincide. It turns out that the Nakayama functors can be used to characterized Frobenius
and symmetric Frobenius categories:

Proposition 9.6 ([?, Proposition 3.24]). Let A be a finite category. Then
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1. A is Frobenius if and only if the left and right Nakayama functors are equivalences. In this
case, they are quasi-inverses to each other.

2. A is symmetric Frobenius if and only if the left and right Nakayama functors are isomorphic
to the identity functor.

Lastly, let us point out that if M is a finite left module category over a finite tensor category
A, then the left and right Nakayama functors of M have a natural structure of twisted .A-module
functors, in the sense that there are natural isomorphisms

NYX & M) = XYV & NY(M) , N (X o M)=VVX e N(M), (22)

see [?, Theorem 4.4] or [?, §2.5].

9.9 Relative Serre functors

Let A be a finite tensor category and let M be a finite left .A-module category. A left relative Serre
functor of M is an endofunctor S : M — M together with a family of natural isomorphisms in
A

Hom(S*(M), N) = VHom(N, M). (23)

Similarly, a right relative Serre functor of M is an endofunctor S : M — M together with a
family of natural isomorphisms

Hom(M, S"(N)) 22 Hom(N, M)". (24)

If they exist, then they are essentially unique by the (enriched) Yoneda lemma. It is shown in [?,
Proposition 4.24] that a finite left .A-module category M has left and right relative Serre functors
if and only if M is ezact, that is, a finite left A-module category where all objects are A-projective.
It is readily verified that in this case the left and right relative Serre functors are quasi-inverses to
each other.

Example 9.7. Let A be a finite tensor category viewed as a finite left module category over itself.
Then S* = VV(—) and S” = (—)"V are readily seen to be the left and right relative Serre functors
(in particular A is exact). In particular, this says that these functors can be understood as the
analogs of the double left and right dual functors in module categories.

Furthermore, according to [?, §3.3], a left (resp. right) relative Serre functor of M has a unique
structure of twisted .A-module functor such that the natural isomorphisms (23) (resp. (24)) are

isomorphisms of A-bimodule functors. This means that there are natural isomorphisms (compare
with (22))
S“XeM)=VWWXaeS (M) , SXoeM)=X"WeS(M), (25)

see also [?, Lemma 4.23].
The relative Serre functors are in fact very closely related to the Nakayama functors:

Theorem 9.8 ([?, Theorem 4.26]). Let A be a finite tensor category with distinguished invertible
object o and let M be an exact left A-module category. Then we have natural isomorphisms

Nxasst | N 2o les

of twisted module functors.
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Corollary 9.9. Let A be a unimodular pivotal finite tensor category with a fized trivialization
a = 1 of the distinguished invertible object, and let M be an exact left A-module category. Then
the isomorphisms above induce canonical isomorphisms

N¢ = sf N" == S"
of untwisted module functors, with the untwisting induced by the pivotal structure.
Corollary 9.10. For any finite tensor category A, we have natural isomorphisms
NE ~a® V\/(_) ’ N™ =2 a—l ® (_)vv

From this last result we easily obtain two important properties about the distinguished invertible
object: if A and B are finite tensor categories, the distinguished invertible object agxp of AKX B
(which is a finite tensor category by Proposition 9.3) and that of A"V are given by

asm ZasRag Qe = ay, (26)

where a4, ag and a4 denote the distinguished invertible objects of A, B and A™Y, respectively.

9.10 Pivotal module categories

Let A be a pivotal finite tensor category with pivotal structure w : id 4 = (=), let M be an
exact left A-module category and let S” be a right relative Serre functor of M. A pivotal structure
for M is a natural isomorphism @ : id xq == S which is compatible with the pivotal structure of
A in the sense that the diagram

XeoM “xen S"(X & M)

27
wxm Ex,m 0

XV\/ ) ST(M)

commutes for all X € A and M € M, where {x s is the isomorphism from (25). An exact left
A-module category M endowed with a pivotal structure will be called a pivotal left A-module
category.

Corollary 9.11. Let A be a unimodular pivotal finite tensor category with a fized trivialization
a = 1 of the distinguished invertible object, and let M be an exact left A-module category. Then
the isomorphisms above induce canonical isomorphisms

Nfx~st | N™ =~ S"

of untwisted module functors, with the untwisting induced by the pivotal structure. A pivotal module
structure on M is a trivialization of N or N™ as module functor.

Example 9.12. Let A be a pivotal finite tensor category, viewed as a left .A-module category (by
left multiplication). By Example 9.7, A is exact and the left and right relative Serre functors can be
taken to be the identity endofunctor, and the isomorphism {xy can be seen to be induced by the
(inverse of the) pivotal structure. Then the identity natural transformation of the identity functor
makes A makes A a pivotal module category over itself (the commutativity of (27) is trivial in this
case).

58



Next we will generalize the previous example. Before that let us introduce the following notation:
if A is a finite tensor category and p,q > 0 are non-negative integers, let us denote by ,A, the
finite AP X (Are")&q—module category whose underlying finite category is A with module structure
determined by

(X1 ®- RX,RY|K---KY,)6Z=X,0 X, Z0Y,® - ®Y].

Lemma 9.13. Let A be a unimodular pivotal finite tensor category with a fixed trivialization o = 1
of the distinguished invertible object of A. Then ,A, inherits a structure of pivotal module category
for every p,q > 0.

Proof. By [?, Lemma 3.2], ,.A, is exact if for any projective object P € AXP KX (A5 e have
that P © X is projective for any X € ,.A,. By the properties of the Deligne product, P is a direct
summand of a projective object W of the form W = €, A; ¥ B; with A;, B; projective. Because
in a finite tensor category, the monoidal product of a projective object and an arbitrary object is
projective, W & X is projective, and since — & X is right exact, P © X is a direct summand of
W & X, hence again projective.

Next let us see how we can obtain a canonical trivialization of the right relative Serre functor
of pA4. On the one hand, the fixed trivialization of the distinguished invertible object and the
pivotal structure induce a trivialization of the right Nakayama functor of A (the underlying finite
tensor category of ,A,) by Corollary 9.10. On the other hand, the distinguished invertible object
of A% ) (A™)¥ is according to (26)

Xp+
Oé_AXp@(Arev)gq Sa P q7

which implies that AXP X (Are")&q is unimodular as well with a trivialization induced by that
of A. Moreover the pivotal structure of A induces a canonical pivotal structure on AP X (LAev)™4,
Therefore we obtain a trivialization id4 = N™ = S” of the right relative Serre functor by Corol-
lary 9.11. The commutativity of (27) holds by construction. O

As it turns out, pivotal module categories can be characterized as categories of modules over
symmetric Frobenius algebras:

Theorem 9.14 ([?, Corollary 3.16]). If M is a pivotal left A-module category, then there is an
equivalence of left A-module categories M ~ mod 4-A for a symmetric Frobenius algebra object A

mn A.

10 Factorization homology

Factorization homology [?, ?] with coefficients in a given E,-algebra is an invariant of n-dimensional
manifolds that satisfies a generalization of the classical Eilenberg-Steenrood axioms for homology
theories. In the present paper, we will be interested in oriented surfaces, so we will need framed Fo-
algebras, that for concreteness we will take in the symmetric monoidal (2, 1)-category Rex' of finite
categories, right-exact functors and natural isomorphisms, with the Deligne product as monoidal
product. We refer the reader to [?, Chapter 2] for the precise definition of a symmetric monoidal
bicategory.
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10.1 A brief review of factorization homology

Let Surf denote the symmetric monoidal (2, 1)-category of compact, oriented surfaces (possibly with
boundary) with hom-groupoids given by the fundamental groupoid IT; (Emb(X, ¥')) of the space of
smooth, oriented embeddings ¥ < ¥’. The monoidal product is given by disjoint union with unit
the empty surface. We also write Disk for the full monoidal subcategory of Surf with objects being
disjoint unions of disks.
It is well-known that a Rexf-valued framed Es-algebra, viewed as a symmetric monoidal (pseudo)functor

Disk —» Rex', is fully determined by the datum of a balanced monoidal category A in Rexf (given
by evaluation at the disk). This means that A € Rex' is additionally equipped with a monoidal

structure ® : AKX A — A, a braiding cxy : X @Y =, Y ® X and a twist (or balancing)

Ox : X =, X. The two latter are families of natural isomorphisms, where the braiding satisfies
the so-called hexagon equations and the twist satisfies

Oxey = cyxex,y (0x @ by)

If A is a finite balanced monoidal category (viewed as a symmetric monoidal functor A : Disk —
Rexf), and ¢ : Disk — Surf is the canonical symmetric monoidal embedding, then factorization
homology is defined as the homotopy left Kan extension of A along ¢,

Disk —A 5 Rex'

{ T (28)
A
Surf

Given a compact, oriented surface ¥, the value of this symmetric monoidal functor on ¥ will be
denoted as [, A. Tt follows from the theory of Kan extensions (e.g. [?, Theorem 6.2.1]) that this
object can be described as the homotopy colimit (i.e., the (2, 1)-colimit)

/A ~ hocolim A¥" (29)
X (D*) =5
n>0
over all disk embeddings (D?)"" < X and all n > 0.
Here is a list of basic properties of factorization homology:

(1) By definition (e.g. [?, Corollary 6.3.9]), there is an equivalence [, A~ A.

(2) Factorization homology is a canonically pointed theory in the following sense: for a surface
Y, the unique embedding () < X induces a functor

Og:vectN/A—>/.A.
0 b

This functor produces a distinguished object in fz A, namely the image of the 1-dimensional
vector space, O 4 x5, := Ox(k), that is called the quantum structure sheaf in [?]. Alternatively,
Oy can be defined (up to isomorphism) as the image of the monoidal unit 1 of A under any
of the universal functors A — [ A (a leg of the colimit cone) for any embedding D? — %,

(3) If (D?)"" < ¥ is an embedding of a disjoint union of disks which factors through a bigger
disk, then the corresponding universal morphism A®" — fz A factors through the n-fold
monoidal product functor (Ey multiplication) A¥" —s A.
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(4) Given a compact, oriented 1-manifold P (that is, a disjoint union of intervals I = [0, 1] and
circles S1), the factorization homology I} py A carries a canonical monoidal structure. Indeed
there is a natural stacking embedding

(PxI)II(PxI)— Px[0,2]=2PxI

which induces a functor

& A&/ A [ 4
PxI PxI

PxI
that defines a monoidal structure with unit O 4 p«7.

(5) Given a surface ¥ with boundary 9%, we have that [, A is naturally a left [, ;A-module.
Indeed for a collar neighborhood 9% x I of 3%, the inclusion map

OExNIIY Sy

induces the action functor

A&/A—>/A.
0Xx1 > >

(6) In complete analogy to the Eilenberg-Steenrood axioms, factorization homology satisfies a
local-to-global principle called excision, which is the main computational tool in the theory.
Suppose 31, Y9 are compact, oriented surfaces (with corners) let ¥ := ¥; Upys 32 be the
surface obtained by a collar gluing along a 1-manifold P. We choose the monoidal structure
on [p, ;A so that [y Ais aleft [, ;A-module category, and [y A is therefore a right
Jps ; A-module category.

The excision axiom then affirms that the embedding ¥, II 35 < 3 induces an equivalence

/ A@,MA/ A:/A. (30)
¥ Yo )

In fact, it is shown in [?, §3.3] that the condition [ p2 A~ A and the excision axiom characterize
a symmetric monoidal functor [ (=) A : Surf — Rex' as factorization homology.

10.2 The A®-module structure

Let us now fix a non-negative integer n > 0 and a balanced monoidal category A. Let us suppose
that a connected, oriented, compact surface ¥ comes with a choice of parametrized, oriented inter-
vals P = U, I embedded in 93, that we call marked boundary intervals. That is, in the language of
[?], ¥ is an object of one of the groupoids of the open surface modular operad.

In this situation, [ .A can be endowed with the structure of left A®"-module category. For
choosing a collar neighborhood P x I 2 11,, D? of the embedded intervals, the embedding

(PxDIIY <Y

@:Am&/.A:/ Ax/A—>/A.
> PxI > >

In particular, if A is a finite tensor category, then [ A is a finite left A¥"-module category.
Indeed.....

induces the action functor
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Example 10.1. For a disk D? with n marked boundary intervals, the corresponding action functor
S AR A~ AT Y

is naturally isomorphic, by property (3) of Section 10.1, to the (n 4 1)-fold monoidal product of A.
Therefore, [, A~ A, that is, A with the left regular action of A% on A.
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