A categorical approach to the universal tangle invariant

Jorge Becerra (RuG)

DIAMANT Symposium

26 November 2021

Classical tangles

Classically, (open, oriented, framed) tangles are viewed in a vertical position as (locally flat) embeddings

$$T: \coprod D^1 \times D^1 \hookrightarrow D^2 \times D^1$$

Tangles form a (ribbon) category Tangle where the composite is given by stacking:

This gives a functorial invariant F_C : Tangle_C \rightarrow C, the *Reshetikhin–Turaev invariant*. For the tangle T the map $f_T: V \rightarrow V$ does not depend on the diagram.

This gives a functorial invariant F_C : Tangle_C \rightarrow C, the *Reshetikhin–Turaev invariant*. For the tangle T the map $f_T: V \rightarrow V$ does not depend on the diagram.

 $\mathcal{C} = \mathsf{Mod}_A$, where A is a Hopf algebra that contains two preferred invertible elements

$$R = \sum_{i} \alpha_i \otimes \beta_i \in A \otimes A$$
 , $\kappa \in A$.

There is a way of obtaining a tangle invariant directly from *A*:

Theorem (Lawrence-Ohtsuki 90's)

Given a (ribbon) Hopf algebra A and a tangle T, placing copies of R on the positive crossings and κ^{-1} on the left-to-right cap and multiplying the elements along the diagram gives an element

$$Z_A(T) \in A^{\otimes (\# \text{ components of } T)}$$

that does not depend on the tangle diagram.

Theorem (Lawrence-Ohtsuki 90's)

Given a (ribbon) Hopf algebra A and a tangle T, placing copies of R on the positive crossings and κ^{-1} on the left-to-right cap and multiplying the elements along the diagram gives an element

$$Z_A(T) \in A^{\otimes (\# \text{ components of } T)}$$

that does not depend on the tangle diagram.

$$Z_A(T) = \sum_{i,j,\ell} \alpha_i \, \beta_j \, \alpha_\ell \, \kappa^{-1} \, \beta_i \, \alpha_j \, \beta_\ell$$

is an invariant of *T*.

Theorem (Lawrence-Ohtsuki 90's)

Given a (ribbon) Hopf algebra A and a tangle T, placing copies of R on the positive crossings and κ^{-1} on the left-to-right cap and multiplying the elements along the diagram gives an element

$$Z_A(T) \in A^{\otimes (\# \text{ components of } T)}$$

that does not depend on the tangle diagram.

$$Z_A(T) = \sum_{i,j,\ell} \alpha_i \, \beta_j \, \alpha_\ell \, \kappa^{-1} \, \beta_i \, \alpha_j \, \beta_\ell$$

is an invariant of T.

For any $(V, \rho_V) \in \mathsf{Mod}_A$, we have

$$\rho_V(Z_A(T)) = f_T.$$

 $Z_A(T)$ is called the universal invariant of T associated to A.

Ribbon Hopf algebras

A **ribbon Hopf algebra** is a Hopf algebra $(A, \mu, \eta, \Delta, \varepsilon, S)$ together with two preferred invertible elements

$$R = \sum_{i} \alpha_{i} \otimes \beta_{i} \in A \otimes A$$
 , $\kappa \in A$

satisfying the following relations:

Ribbon Hopf algebras

A **ribbon Hopf algebra** is a Hopf algebra $(A, \mu, \eta, \Delta, \varepsilon, S)$ together with two preferred invertible elements

$$R = \sum_{i} \alpha_{i} \otimes \beta_{i} \in A \otimes A$$
 , $\kappa \in A$

satisfying the following relations:

- \bullet $(\Delta \otimes Id)R = R_{13}R_{23}$,
- $(\mathrm{Id} \otimes \Delta)R = R_{13}R_{12}$,
- $(\tau \circ \Delta)(x) = R\Delta(x)R^{-1}$, $\forall x \in A$, $S^2(x) = \kappa x \kappa^{-1}$, $\forall x \in A$,
- $\bullet \ \Delta(\kappa) = \kappa \otimes \kappa,$
- $\varepsilon(\kappa) = 1$,

 - $\sum_{i} \alpha_{i} \kappa^{-1} \beta_{i} = \sum_{i} \beta_{i} \kappa \alpha_{i}$.

Ribbon Hopf algebras

A **ribbon Hopf algebra** is a Hopf algebra $(A, \mu, \eta, \Delta, \varepsilon, S)$ together with two preferred invertible elements

$$R = \sum_{i} \alpha_i \otimes \beta_i \in A \otimes A$$
 , $\kappa \in A$

satisfying the following relations:

- \bullet $(\Delta \otimes Id)R = R_{13}R_{23}$,
- $(\mathrm{Id} \otimes \Delta)R = R_{13}R_{12}$,
- $(\tau \circ \Delta)(x) = R\Delta(x)R^{-1}$, $\forall x \in A$, $S^2(x) = \kappa x \kappa^{-1}$, $\forall x \in A$,
- $\bullet \ \Delta(\kappa) = \kappa \otimes \kappa,$
- $\varepsilon(\kappa) = 1$,
- - $\sum_{i} \alpha_{i} \kappa^{-1} \beta_{i} = \sum_{i} \beta_{i} \kappa \alpha_{i}$.

Examples

- 1. For a finite group G and a field k, k(G) \rtimes kG is a ribbon Hopf algebra.
- 2. Many instances using the Drinfeld double construction, Drinfeld -Jimbo's quantum enveloping algebras, etc.

However, this vertical realisation is rather coarse if one wants to study natural operations on tangles:

It turns out that tangles mimic the Hopf algebra axioms:

Example

The coalgebra axiom $(\varepsilon \otimes Id)\Delta = Id$ becomes in tangles

Example

The bialgebra axiom $\Delta(xy) = \Delta(x)\Delta(y)$ becomes in tangles

Rough dictionary

OPERATION	HOPF ALGEBRA	TANGLES
μ	multiplication	strand merging
η	unit	trivial strand
Δ	comultiplication	strand doubling
ε	counit	strand removal
S	antipode	"tweaked" strand orientation reversal

Rough dictionary

OPERATION	HOPF ALGEBRA	TANGLES
μ	multiplication	strand merging
η	unit	trivial strand
Δ	comultiplication	strand doubling
ε	counit	strand removal
S	antipode	"tweaked" strand orientation reversal

We would like to find a suitable setup for tangles to make the previous argument precise.

Rotational virtual tangles

Sketch definition (van der Veen)

Let *I* be a finite set. An *rv-tangle labelled by I* is a finite, oriented graph such that

- There are only four-valent and univalent vertices.
- Each edge has two labels: (1) an element of *I*, (2) an integer called the *rotation number*.
- Locally they look like

If we are to represent tangles, we must mod out by the "rv-Reidemeister moves":

For a finite set *I*, let us denote

$$\mathfrak{I}_I := \frac{\{\text{rv-tangles labelled by } I\}}{\text{rv-Reidemeister moves}}.$$

The benefit of considering rv-tangles is twofold:

• There is an injective realisation map

$$\left(\begin{array}{c} \text{Framed oriented} \\ \text{tangles in } D^2 \times D^1 \\ \text{labelled with } I \end{array}\right) \, \longrightarrow \, \mathfrak{T}_I$$

so any classical tangle can be viewed as a rv-tangle.

• Let $\mathcal H$ be the symmetric monoidal category monoidally generated by a Hopf algebra, that is $\mathcal H$ has finite sets as objects and the morphisms are monoidally generated by

$$\mu_{i,j}^k : \{i,j\} \to \{k\}$$
 , $\eta^k : \emptyset \to \{k\}$, $\Delta_i^{j,k} : \{i\} \to \{j,k\}$, $\varepsilon_i : \{i\} \to \emptyset$, $S_i : \{i\} \to \{i\}$, $\mathrm{Id}_i^j : \{i\} \to \{j\}$.

subject to the Hopf algebra axioms. A Hopf algebra is the same data as a strong monoidal functor $\mathcal{H} \to \mathsf{Vect}_k$.

Proposition (van der Veen, B.)

There is a lax monoidal functor

$$\mathfrak{T}: (\mathcal{H}, \coprod) \to (\mathsf{Set}, \times)$$

sending I to T_I .

On generators:

$$\Delta_i^{pq}(X_{ij}) = \mu_{ab}^j(X_{pa} \coprod X_{qb})$$

$$\Delta_j^{pq}(X_{ij}) = \mu_{ab}^i(X_{aq} \coprod X_{bp})$$

On generators:

$$\Delta_i^{pq}(X_{ij}) = \mu_{ab}^j(X_{pa} \coprod X_{qb}) \qquad \qquad i \qquad \qquad j \qquad \qquad q \qquad p \qquad j$$

$$\Delta_j^{pq}(X_{ij}) = \mu_{ab}^i(X_{aq} \coprod X_{bp}) \qquad \qquad i \qquad \qquad j \qquad \qquad i \qquad p$$

These relations already "appeared" in the axioms for a ribbon Hopf algebra (!!)

$$(\Delta \otimes \operatorname{Id})R = R_{13}R_{23}$$
 , $(\operatorname{Id} \otimes \Delta)R = R_{13}R_{12}$.

Jorge Becerra (RuG)

For the "spinner" C_i :

$$\Delta_i^{pq}(C_i) = C_p \coprod C_q$$

$$\varepsilon_i(C_i) = \emptyset$$

For the "spinner" C_i :

$$\Delta_i^{pq}(C_i) = C_p \coprod C_q$$

These relations already "appeared" as well as

$$\Delta(\kappa) = \kappa \otimes \kappa$$
 , $\varepsilon(\kappa) = 1$.

Rough dictionary

	RIBBON HOPF ALGEBRA	RV-TANGLES
$\overline{\mu}$	multiplication	strand merging
η	unit	trivial strand
Δ	comultiplication	strand doubling
ε	counit	strand removal
S	antipode	"tweaked" strand orientation reversal
	$R^{\pm 1}$	$X_{ij}^{\pm 1}$
-	$\kappa^{\pm 1}$	$C_i^{\pm 1}$
	\otimes	ĬI

Upshot

For a finite set *I*, one can define an *I*-fold *unordered tensor product*

$$A^{\otimes I} \cong A^{\otimes \#I}$$

as the colimit of a certain functor.

This defines a lax monoidal functor

$$A:\mathcal{H} o\mathsf{Set}$$

sending *I* to (the underlying set of) $A^{\otimes I}$.

Theorem (B.)

Given a ribbon Hopf algebra A, the universal invariant gives rise to a monoidal natural transformation of lax monoidal functors

$$Z_A: \mathfrak{T} \Longrightarrow A$$

This means that for any finite set *I* there are maps

$$(Z_A)_I: \mathfrak{T}_I \to A^{\otimes I}$$

mapping

$$(Z_A)_{\{i,j\}}(X_{ij}^{\pm 1}) = R_{ij}^{\pm 1} \in A^{\otimes \{i,j\}}$$
 , $(Z_A)_{\{i\}}(C_i^{\pm 1}) = \kappa_i^{\pm 1} \in A^{\otimes \{i\}}$

which are tangle invariants and that are natural with respect to all Hopf operations.

This point of view is powerful as it realises the universal tangle invariant as a map in the presheaf category hSet := $\operatorname{Set}^{\mathcal{H}}$, the category of Hopf sets. This is similar to realising simplicial sets as the presheaf category sSet := $\operatorname{Set}^{\Delta^{op}}$.

Actually both categories can be related:

This point of view is powerful as it realises the universal tangle invariant as a map in the presheaf category hSet := $Set^{\mathcal{H}}$, the category of Hopf sets. This is similar to realising simplicial sets as the presheaf category $sSet := Set^{\Delta^{op}}$.

Actually both categories can be related:

Proposition (B.)

There is a functor $\Psi: \Delta^{op} \to \mathcal{H}$ which gives rise to adjuctions

Thank you for your attention.

Rotational virtual tangles

Definition (van der Veen)

Let *I* be a finite set. An *rv-tangle labelled by I* is a finite, oriented graph with only four-valent and univalent vertices such that

- Each edge carries an element of I and an integer called the rotation number.
- Edges around every four-valent vertex are cyclically ordered and pairs of opposite edges are labelled with the same element of *I* and are marked as the overpass or underpass.
- Edges labelled with the same element of *I* form connected oriented paths with distinct endpoints, called *strands*.

Upshot

For a finite set *I*, one can define an *I*-fold unordered tensor product

$$A^{\otimes I} \cong A^{\otimes \#I}$$
.

Set

- Bij = category of ordinals and bijections,
- $fSet^{\cong} = category$ of finite sets and bijections.

If U: Bij \to fSet $^{\cong}$ is the forgetful, for a finite set I, we write $U \downarrow I$ for the corresponding comma category.

Given a collection $(A^i: i \in I)$ of copies of a ribbon Hopf algebra A indexed by I, the *unordered tensor product* of A is the colimit

$$A^{\otimes I} := \underset{U \downarrow I}{\operatorname{colim}} A^{\sigma(1)} \otimes \cdots \otimes A^{\sigma(n)},$$

where $\sigma : [n] \stackrel{\cong}{\to} I$ runs through the elements of $U \downarrow I$.

The functor $\mathfrak{T}\colon (\mathcal{H},\amalg)\to (\mathsf{Set},\times)$ being lax monoidal means that there is a map

$$\mathfrak{T}_I \times \mathfrak{T}_J \to \mathfrak{T}_{I \coprod J}$$

natural on *I* and *J*.

The natural transformation $Z_A : \mathfrak{T} \Longrightarrow A$ being monoidal means that the following square commutes:

$$\begin{array}{ccc}
\mathfrak{T}_{I} \times \mathfrak{T}_{J} & \longrightarrow & \mathfrak{T}_{I \coprod J} \\
(Z_{A})_{I} \times (Z_{A})_{J} \downarrow & & \downarrow (Z_{A})_{I \coprod J} \\
A^{\otimes I} \times A^{\otimes J} & \longrightarrow & A^{\otimes I \coprod J}
\end{array}$$