

# XC-algebras and quantum knot invariants

Jorge Becerra

Université Bourgogne Europe

Congreso Bienal de la RSME  
20 January 2025

Slides available at [bit.ly/jbecerra](https://bit.ly/jbecerra)

# Based on...



Jorge Becerra Garrido.

*Universal quantum knot invariants.*

PhD thesis, University of Groningen, 2024.



Jorge Becerra.

On Bar-Natan–van der Veen’s perturbed Gaussians.

*Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM*, 118(2):Paper No. 46, 58, 2024.



Jorge Becerra.

A refined functorial universal tangle invariant.

arXiv:2501.17668.



Jorge Becerra.

XC-tangles and universal invariants.

arXiv:2511.08045.



Jorge Becerra and Kevin van Helden.

Minimal generating sets of rotational Reidemeister moves.

arXiv:2506.15628.

# What are *quantum* knot invariants?

These are knot invariants whose construction is not intrinsic to the knot, but rather they have the extra data of some algebraic structure (a certain category, a TQFT, an algebra, a power series...). In some cases they admit extensions to quantum invariants of 3-manifolds.

# What are *quantum* knot invariants?

These are knot invariants whose construction is not intrinsic to the knot, but rather they have the extra data of some algebraic structure (a certain category, a TQFT, an algebra, a power series...). In some cases they admit extensions to quantum invariants of 3-manifolds.

Some examples:

- The Jones polynomial,
- Khovanov homology,
- Khovanov-Rozansky / Lee homology,
- The Kontsevich invariant,
- $\vdots$

# Today: the universal invariant

Let  $(H, R, v)$  be a *ribbon Hopf algebra*: this is a Hopf algebra  $(H, \mu, \eta, \Delta, \varepsilon, S)$  over some ring  $\mathbb{k}$  with

- a *universal R-matrix*  $R \in H \otimes H$ , i.e. an invertible element with

$$(\Delta \otimes \text{Id})R = R_{13} \cdot R_{23} \quad , \quad (\text{Id} \otimes \Delta)R = R_{13} \cdot R_{12} \quad , \quad \Delta^{\text{op}} = R \cdot \Delta(-) \cdot R^{-1}$$

- a *ribbon element*  $v \in H$ ,

$$v \in \mathcal{Z}(A) \quad , \quad v^2 = uS(u) \quad , \quad \Delta(v) = (R_{21}R)^{-1}(v \otimes v) \quad , \quad \varepsilon(v) = 1 \quad , \quad S(v) = v$$

with  $u = \mu^{\text{op}}(\text{Id} \otimes S)(R)$  the Drinfeld element. The ribbon element is automatically invertible.

# Today: the universal invariant

Let  $(H, R, v)$  be a *ribbon Hopf algebra*: this is a Hopf algebra  $(H, \mu, \eta, \Delta, \varepsilon, S)$  over some ring  $\mathbb{k}$  with

- a *universal R-matrix*  $R \in H \otimes H$ , i.e. an invertible element with

$$(\Delta \otimes \text{Id})R = R_{13} \cdot R_{23} \quad , \quad (\text{Id} \otimes \Delta)R = R_{13} \cdot R_{12} \quad , \quad \Delta^{\text{op}} = R \cdot \Delta(-) \cdot R^{-1}$$

- a *ribbon element*  $v \in H$ ,

$$v \in \mathcal{Z}(A) \quad , \quad v^2 = uS(u) \quad , \quad \Delta(v) = (R_{21}R)^{-1}(v \otimes v) \quad , \quad \varepsilon(v) = 1 \quad , \quad S(v) = v$$

with  $u = \mu^{\text{op}}(\text{Id} \otimes S)(R)$  the Drinfeld element. The ribbon element is automatically invertible.

## Theorem (Lawrence, Lee, Ohtsuki, Habiro,...)

Given a ribbon Hopf algebra  $(H, R, v)$ , one can obtain an invariant  $\mathfrak{Z}_H(K) \in H$  of framed, oriented (long) knots.

# The construction

Write

$$R = \sum_i \alpha_i \otimes \beta_i \quad , \quad R^{-1} = \bar{\alpha}_i \otimes \bar{\beta}_i \quad , \quad \kappa := uv^{-1}.$$

# The construction

Write

$$R = \sum_i \alpha_i \otimes \beta_i \quad , \quad R^{-1} = \bar{\alpha}_i \otimes \bar{\beta}_i \quad , \quad \kappa := uv^{-1}.$$

Consider a knot diagram in *rotational form*, i.e. formed by stitching on the plane the following elementary blocks (twisting them is NOT allowed !)



this is always possible.

# The construction

Write

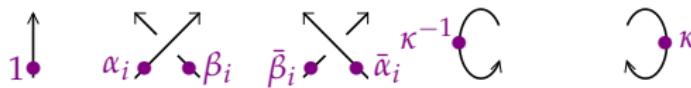
$$R = \sum_i \alpha_i \otimes \beta_i \quad , \quad R^{-1} = \bar{\alpha}_i \otimes \bar{\beta}_i \quad , \quad \kappa := uv^{-1}.$$

Consider a knot diagram in *rotational form*, i.e. formed by stitching on the plane the following elementary blocks (twisting them is NOT allowed !)



this is always possible.

Decorate these pieces with copies of  $R^{\pm 1}$  and  $\kappa^{\pm 1}$  as follows,

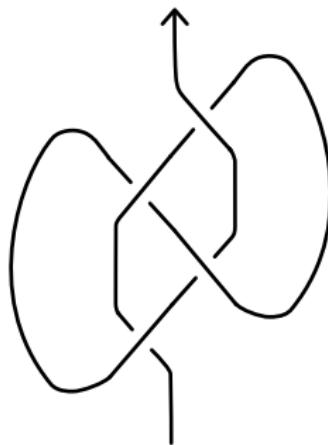


and then define  $\mathfrak{Z}_H(K)$  as the element resulting from multiplying these beads from right to left following the orientation of the knot.

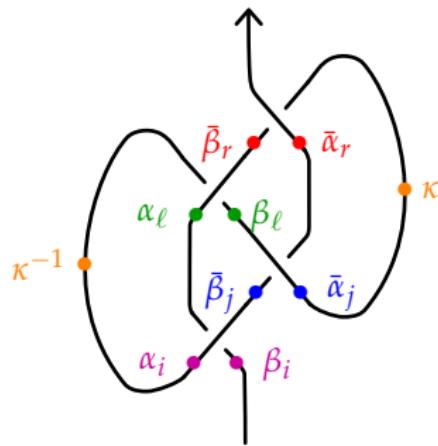
# Example



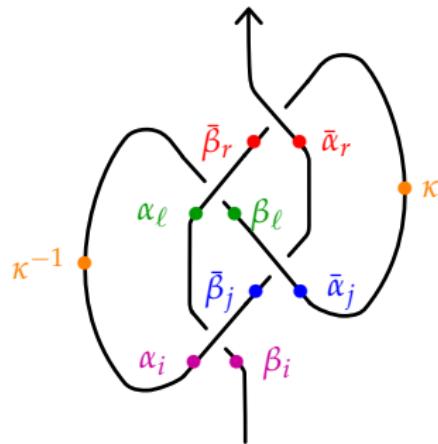
# Example



# Example



# Example



$$\mathfrak{Z}_H(4_1) = \sum_{i,j,\ell,r} \bar{\alpha}_r \bar{\beta}_j \alpha_i \kappa^{-1} \beta_\ell \bar{\alpha}_j \kappa \bar{\beta}_r \alpha_\ell \beta_i \in H$$

## Why universal?

For any finite-dimensional representation  $(V, \rho)$  of  $H$ , the map

$$\rho(\mathfrak{Z}_H(K)) : V \longrightarrow V$$

equals the celebrated *Reshetikhin-Turaev invariant*  $RT_V(K)$  obtained from the ribbon category  $H\text{-mod}$  of finite-dimensional  $H$ -modules.

## Why universal?

For any finite-dimensional representation  $(V, \rho)$  of  $H$ , the map

$$\rho(\mathfrak{Z}_H(K)) : V \longrightarrow V$$

equals the celebrated *Reshetikhin-Turaev invariant*  $RT_V(K)$  obtained from the ribbon category  $H\text{-mod}$  of finite-dimensional  $H$ -modules.

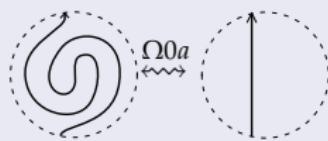
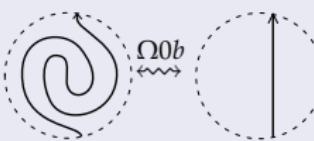
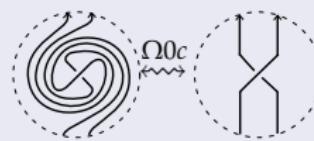
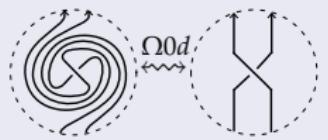
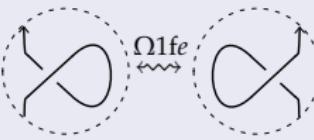
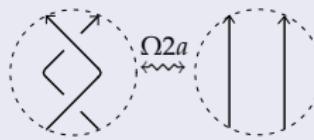
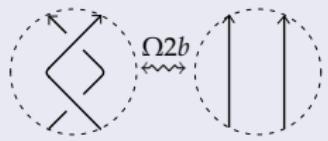
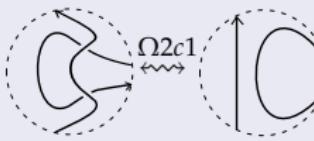
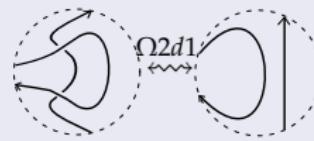
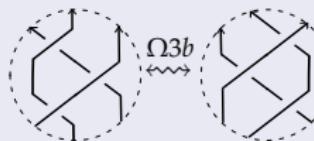
## Key observation

The comultiplication, counit and the antipode of  $H$  are not used at all to construct  $\mathfrak{Z}_H$  !

Actually, to construct a knot invariant from this construction, we only need an algebra  $A$  with a couple of elements  $R, \kappa$  such that the Reidemeister moves are preserved!

# Theorem (B.-van Helden 2025)

The following is a (non-minimal) generating set of rotational Reidemeister moves for rotational knot diagrams:



# XC-algebras

## Definition

Let  $A$  be a  $\mathbb{k}$ -algebra. An *XC-structure* on  $A$  is the choice of two invertible elements

$$R \in A \otimes A \quad , \quad \kappa \in A$$

satisfying

$$(\text{XC0}) \quad R^{\pm 1} = (\kappa \otimes \kappa) \cdot R^{\pm 1} \cdot (\kappa^{-1} \otimes \kappa^{-1}),$$

$$(\text{XC1f}) \quad \sum_i \beta_i \kappa \alpha_i = \sum_i \alpha_i \kappa^{-1} \beta_i,$$

$$(\text{XC2c}) \quad 1 \otimes \kappa^{-1} = \sum_{i,j} \alpha_i \bar{\alpha}_j \otimes \bar{\beta}_j \kappa^{-1} \beta_i,$$

$$(\text{XC2d}) \quad \kappa \otimes 1 = \sum_{i,j} \bar{\alpha}_i \kappa \alpha_j \otimes \beta_j \bar{\beta}_i,$$

$$(\text{XC3}) \quad R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}.$$

The triple  $(A, R, \kappa)$  is called an *XC-algebra*.

An XC-algebra is the minimum algebraic structure needed to define a framed, oriented knot invariant.

## Proposition

*If  $(A, R, \kappa)$  is an XC-algebra, then the same construction of  $\mathfrak{Z}_A(K) \in A$  from above gives rise to a well-defined knot invariant.*

# A few examples of XC-algebras

1. Any ribbon Hopf algebra  $(H, R, v)$  has an underlying XC-structure

$$(H, R, \kappa := uv^{-1}).$$

# A few examples of XC-algebras

1. Any ribbon Hopf algebra  $(H, R, v)$  has an underlying XC-structure

$$(H, R, \kappa := uv^{-1}).$$

2. If  $(H, R, v)$  as before, any  $(V, \rho) \in H\text{-mod}$  induces an XC-algebra

$$(\text{End}_{\mathbb{k}}(V), (\rho \otimes \rho)(R), \rho(\kappa)).$$

# A few examples of XC-algebras

1. Any ribbon Hopf algebra  $(H, R, v)$  has an underlying XC-structure

$$(H, R, \kappa := uv^{-1}).$$

2. If  $(H, R, v)$  as before, any  $(V, \rho) \in H\text{-mod}$  induces an XC-algebra

$$(\text{End}_{\mathbb{k}}(V), (\rho \otimes \rho)(R), \rho(\kappa)).$$

3. There are XC-structures that do not have a ribbon Hopf-algebraic origin: on the *Sweedler algebra*  $SW = \langle s, w | s^2 = 1, w^2 = 0 \rangle$

$$R := 1 \otimes 1 + (1 + s + w + sw) \otimes (s + w + sw) \quad , \quad \kappa := -s - w - sw.$$

We have

$$\mathfrak{Z}_{SW}(\textcirclearrowleft) = -1 - 2(s + w + sw) \notin \mathcal{Z}(SW) = \mathbb{k}1.$$

# A few honest examples

Set  $\mathbb{k} := \mathbb{Z}[q, q^{-1}]$  and  $A := \text{End}_{\mathbb{k}}(\mathbb{k}^2) \cong \mathcal{M}_2(\mathbb{k})$ .

## Proposition

*The elements*

$$R := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} q^{-1} & 0 \\ 0 & q \end{pmatrix} + (q - q^{-3}) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in A^{\otimes 2}$$

*and*

$$\kappa := \begin{pmatrix} q^2 & 0 \\ 0 & q^{-2} \end{pmatrix} \in A$$

*define a (traced) XC-structure on  $A$ .*

*Furthermore, for a 0-framed knot  $K$  we have that*

$$\mathfrak{Z}_A(K) = J_2(K)_{|q^2 = -t^{-1/2}} \cdot \text{Id}_{\mathbb{k}^2}.$$

Set  $\mathbb{k} := \mathbb{Z}[q, q^{-1}]$  and  $A := \text{End}_{\mathbb{k}}(\mathbb{k}^2) \cong \mathcal{M}_2(\mathbb{k})$ .

## Proposition

*The elements*

$$\begin{aligned} R := & \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} q^{-2} & 0 \\ 0 & q^{-1} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} q & 0 \\ 0 & -q^2 \end{pmatrix} \\ & + (q^{-2} - q^2) \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in A^{\otimes 2} \end{aligned}$$

*and*

$$\kappa := \begin{pmatrix} q^2 & 0 \\ 0 & -q^2 \end{pmatrix} \in A$$

*define a (traced) XC-algebra structure on  $A$ .*

*Furthermore, for a 0-framed knot  $K$  we have that*

$$\mathfrak{Z}_A(K) = \Delta(K)_{|q^2=t^{1/2}} \cdot \text{Id}_{\mathbb{k}^2}.$$

The *Dilbert algebra* is

$$DLB = \langle d, l, b \mid dl = d, db = 1 - l, lb = b, l^2 = l = bd, \text{others} = 0 \rangle.$$

## Proposition

*The elements*

$$R := 1 \otimes 1 - 2(1 - l) \otimes l + 2b \otimes d \quad , \quad \kappa := \mathbf{i}(1 - 2l)$$

*define a (traced) XC-algebra structure on  $DLB$ .*

*Furthermore, for a 0-framed knot  $K$  we have that*

$$\mathfrak{Z}_{DLB}(K) = \Delta(K)(-1).$$

## Theorem (B., to appear hopefully next week)

Any XC-algebra structure on the Sweedler algebra  $SW$  produces a framed knot invariant that only depends on the framing.

In particular, such an invariant is trivial for any 0-framed knot:

$$\mathfrak{Z}_{SW}(K) = 1.$$

# Categorical framework

Most of the constructions in quantum topology are categorical/ functorial (TQFTs, RT invariant, lasagna skein modules,  $Kh/Lee$  homology,...). The universal invariant did not have one even in the ribbon Hopf algebra setting.

# Categorical framework

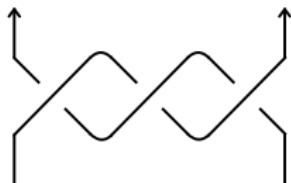
Most of the constructions in quantum topology are categorical/ functorial (TQFTs, RT invariant, lasagna skein modules,  $Kh$  /  $Lee$  homology,...). The universal invariant did not have one even in the ribbon Hopf algebra setting.

$\mathcal{T}^{\text{up}}$  := monoidal category of framed, oriented tangles in a cube without closed components whose strands are oriented from bottom to top.

# Categorical framework

Most of the constructions in quantum topology are categorical/ functorial (TQFTs, RT invariant, lasagna skein modules,  $Kh/Lee$  homology,...). The universal invariant did not have one even in the ribbon Hopf algebra setting.

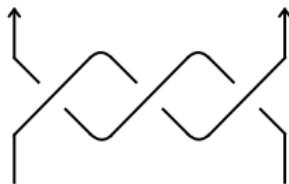
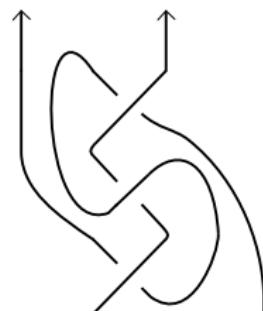
$\mathcal{T}^{\text{up}}$  := monoidal category of framed, oriented tangles in a cube without closed components whose strands are oriented from bottom to top.



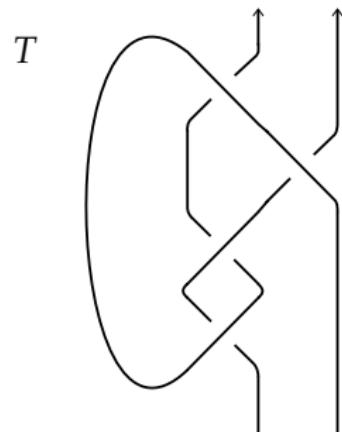
# Categorical framework

Most of the constructions in quantum topology are categorical/ functorial (TQFTs, RT invariant, lasagna skein modules,  $Kh$ /Lee homology,...). The universal invariant did not have one even in the ribbon Hopf algebra setting.

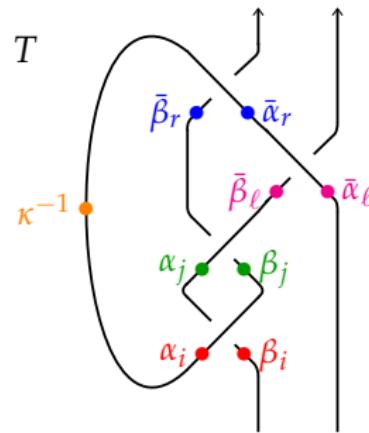
$\mathcal{T}^{\text{up}}$  := monoidal category of framed, oriented tangles in a cube without closed components whose strands are oriented from bottom to top.



Given an XC-algebra  $(A, R, \kappa)$ , the universal invariant can be defined similarly for upwards tangles:



Given an XC-algebra  $(A, R, \kappa)$ , the universal invariant can be defined similarly for upwards tangles:



$$\mathfrak{Z}_A(T) = \sum_{i,j,\ell,r} \bar{\beta}_\ell \alpha_j \beta_i \otimes \bar{\beta}_r \beta_j \alpha_i \kappa^{-1} \bar{\alpha}_r \bar{\alpha}_\ell \in A \otimes A,$$

## Theorem (B. 2024)

Let  $(A, R, \kappa)$  be an XC-algebra. There exists a monoidal category  $\mathcal{E}(A)$  and a strict monoidal full functor

$$Z_A : \mathcal{T}^{\text{up}} \longrightarrow \mathcal{E}(A)$$

which encodes the universal invariant  $\mathfrak{Z}_A$ :

$$Z_A(T) = (\mathfrak{Z}_A(T), \sigma_T).$$

Furthermore, this functor in fact arises in a canonical way – from a universal property.

If  $A$  is equipped with a trace, then one can in fact extend the construction to a functor

$$Z_A : \mathcal{T}^+ \longrightarrow \mathcal{E}^{\text{tr}}(A)$$

encoding  $\mathfrak{Z}_A$  also arising canonically.

This setting allows to a functorial comparison with the Reshetikhin-Turaev invariant  $RT_V : \mathcal{T}^{\text{up}} \longrightarrow H\text{-mod}$ .

This setting allows to a functorial comparison with the Reshetikhin-Turaev invariant  $RT_V : \mathcal{T}^{\text{up}} \longrightarrow H\text{-mod}$ .

## Theorem (B. 2024)

Let  $H$  be a ribbon Hopf algebra and let  $V$  be a finite-free  $H$ -module. Then the Reshetikhin-Turaev invariant  $RT_V$  factors through  $Z_H$ :

$$\begin{array}{ccc} \mathcal{T}^{\text{up}} & \xrightarrow{RT_V} & H\text{-mod} \\ Z_H \downarrow & \nearrow \rho_V & \\ \mathcal{E}(H) & & \end{array}$$

That is,  $RT_V(T) = \rho_V(Z_H(T))$  for any upwards tangle  $T$ . In other words, this diagram categorifies the equality

$$RT_V(K) = \rho(Z_H(K))$$

seen before.

If  $H$  is ribbon and  $V$  an  $H$ -module, we can produce two functors:

$$RT_V : \mathcal{T}^+ \longrightarrow H\text{-mod} \quad , \quad Z_{\text{End}_{\mathbb{k}}(V)} : \mathcal{T}^+ \longrightarrow \mathcal{E}(\text{End}_{\mathbb{k}}(V)).$$

It turns out that these two invariants are essentially the same.

If  $H$  is ribbon and  $V$  an  $H$ -module, we can produce two functors:

$$RT_V : \mathcal{T}^+ \longrightarrow H\text{-mod} \quad , \quad Z_{\text{End}_{\mathbb{k}}(V)} : \mathcal{T}^+ \longrightarrow \mathcal{E}(\text{End}_{\mathbb{k}}(V)).$$

It turns out that these two invariants are essentially the same.

### Theorem (B. 2024)

Let  $H$  be a ribbon Hopf algebra and let  $V$  be a finite-free  $H$ -module. Then we have the following commutative diagram:

$$\begin{array}{ccccc} & & \mathcal{T}^+ & & \\ & Z_{\text{End}_{\mathbb{k}}(V)} & \swarrow & \searrow & \\ \mathcal{E}(\text{End}_{\mathbb{k}}(V)) & \xleftarrow{\quad \iota_V \quad} & H\text{-mod} & & \end{array}$$

with  $\iota_V$  a monoidal embedding. That is, viewing  $\mathcal{E}(\text{End}(V))$  as a traced monoidal subcategory of  $H\text{-mod}$ , the functors  $Z_{\text{End}_{\mathbb{k}}(V)}$  and  $RT_V$  coincide.

# Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and *virtual* crossings –the latter are really not there!– modulo appropriate Reidemeister moves.

# Extension to virtual tangles

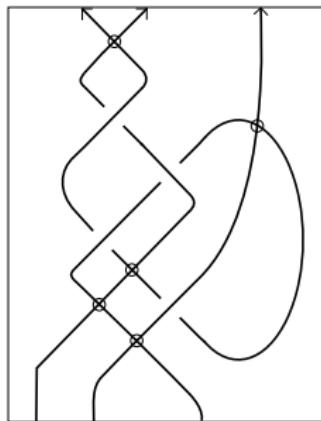
A virtual knot is a knot diagram with positive, negative and *virtual* crossings –the latter are really not there!– modulo appropriate Reidemeister moves.

$v\mathcal{T}^{\text{up}}$  := monoidal category of virtual (framed!) upwards tangles

# Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and *virtual* crossings –the latter are really not there!– modulo appropriate Reidemeister moves.

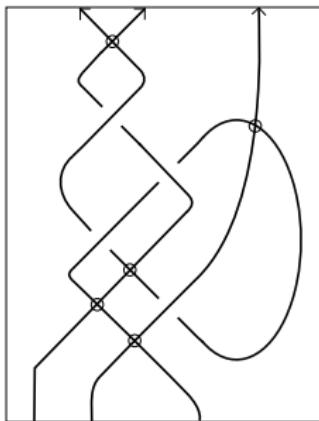
$v\mathcal{T}^{\text{up}} :=$  monoidal category of virtual (framed!) upwards tangles



# Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and *virtual* crossings –the latter are really not there!– modulo appropriate Reidemeister moves.

$v\mathcal{T}^{\text{up}}$  := monoidal category of virtual (framed!) upwards tangles



Virtual knot = Gauss diagram on  $\uparrow$   
Virtual upwards tangle = Gauss diagram on  $\Pi_n \uparrow$ .

## Theorem (B. 2025)

If  $A$  is an XC-algebra, then there exists a monoidal category  $v\mathcal{E}(A)$  and a functor

$$Z_A : v\mathcal{T}^{\text{up}} \longrightarrow v\mathcal{E}(A)$$

extending the universal invariant of upwards tangles,

$$\begin{array}{ccc} \mathcal{T}^{\text{up}} & \xrightarrow{Z_A} & \mathcal{E}(A) \\ \downarrow & & \downarrow \\ v\mathcal{T}^{\text{up}} & \xrightarrow{Z_A} & v\mathcal{E}(A) \end{array}$$

More naturally,  $Z_A$  extends to the category  $\mathcal{T}^{\text{XC}}$  of XC-tangles, a class of decorated abstract graphs that consists of the exact geometrical counterpart of XC-algebras.

Combining the last two theorems:

## Corollary

Let  $H$  be a ribbon Hopf algebra and let  $V$  be a finite-free  $H$ -module. Then the invariant

$$Z_{\text{End}_{\mathbb{k}}(V)} : v\mathcal{T}^{\text{up}} \longrightarrow v\mathcal{E}(\text{End}_{\mathbb{k}}(V))$$

extends the Reshetikhin-Turaev invariant  $RT_V : \mathcal{T}^{\text{up}} \longrightarrow H\text{-mod}$  to virtual upwards tangles.

# ¡Gracias por su atención!

Thank you – Dank u wel – Merci