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What are quantum knot invariants?

These are knot invariants whose construction is not intrinsic to the knot, but
rather they have the extra data of some algebraic structure (a certain category,

a TQFT, an algebra, a power series...). In some cases they admit extensions to
quantum invariants of 3-manifolds.
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What are quantum knot invariants?

These are knot invariants whose construction is not intrinsic to the knot, but
rather they have the extra data of some algebraic structure (a certain category,
a TQFT, an algebra, a power series...). In some cases they admit extensions to
quantum invariants of 3-manifolds.

Some examples:
@ The Jones polynomial,
e Khovanov homology,
@ Khovanov-Rozansky / Lee homology,
@ The Kontsevich invariant,
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Today: the universal invariant

Let (H, R, v) be a ribbon Hopf algebra: this is a Hopf algebra (H, u, 77, A, ¢, S) over
some ring k with

@ a universal R-matrix R € H ® H, i.e. an invertible element with
(AQIDR =Ri3-Ry3 , (Id®AR =Ry3-Rj;p , A =R-A(-)-R7!
@ aribbon element v € H,

ve Z(A) , v =uSw) , Av)=RuR)w®v), e@w)=1, S@) =0

with # = u°P(Id ® S)(R) the Drinfeld element. The ribbon element is
automatically invertible.
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Today: the universal invariant

Let (H, R, v) be a ribbon Hopf algebra: this is a Hopf algebra (H, u, 77, A, ¢, S) over
some ring k with

@ a universal R-matrix R € H ® H, i.e. an invertible element with
(AQIDR =Ri3-Ry3 , (Id®AR =Ry3-Rj;p , A =R-A(-)-R7!
@ aribbon element v € H,

ve Z(A) , v =uSw) , Av)=RuR)w®v), e@w)=1, S@) =0

with # = u°P(Id ® S)(R) the Drinfeld element. The ribbon element is
automatically invertible.

Theorem (Lawrence, Lee, Ohtsuki, Habiro,...)

Given a ribbon Hopf algebra (H, R, v), one can obtain an invariant 3(K) € H
of framed, oriented (long) knots.
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The construction

Write
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The construction

Write

R:lei®‘8i p R7! :Eél'@Bi , K= uv L.
i

Consider a knot diagram in rotational form, i.e. formed by stitching on the
plane the following elementary blocks (twisting them is NOT allowed !)

oA X 00,

this is always possible.
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The construction

Write

R:Zai®ﬁi p R7! :Eél'@,gi , K= uv L.
i

Consider a knot diagram in rotational form, i.e. formed by stitching on the
plane the following elementary blocks (twisting them is NOT allowed !)

oA X 00,

this is always possible.
Decorate these pieces with copies of R*! and x*! as follows,

11 Dé:/\ﬁi Bix&iflc OK

and then define 3(K) as the element resulting from multiplying these beads
from right to left following the orientation of the knot.
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Example




Example




3u@) =Y & Bjoix ' BrajrxBrogpie H

i,jlr
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Why universal?

For any finite-dimensional representation (V, p) of H, the map
p3u(K)) : V — V

equals the celebrated Reshetikhin-Turaev invariant RTy (K) obtained from the
ribbon category H-mod of finite-dimensional H-modules.
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For any finite-dimensional representation (V, p) of H, the map

p3u(K)) : V — V

equals the celebrated Reshetikhin-Turaev invariant RTy (K) obtained from the
ribbon category H-mod of finite-dimensional H-modules.

Key observation

The comultiplication, counit and the antipode of H are not used at all to
construct 35 !

Actually, to construct a knot invariant from this construction, we only need an
algebra A with a couple of elements R, x such that the Reidemeister moves are
preserved!
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Theorem (B.-van Helden 2025)

The following is a (non-minimal) generating set of rotational Reidemeister moves for
rotational knot diagrams:

" Q0a ‘
2o ;

e Becerra (UBE) XC-algebras and quantum knot invariants 20 January 2025



XC-algebras

Definition

Let A be a k-algebra. An XC-structure on A is the choice of two invertible
elements

ReARA P KE A

satisfying
(XCO) R*! = (x®x)- R* - (x T @x7Y),
(XC1f) ¥ Bixe; = ¥ i1 B;
(XC20) 1@« =¥ o ® Bix1B;,
(XC2d) k@1 =Y aike; ® BiBi,
(XC3) R12R13R23 = Ry3R13R12.

The triple (A, R, ) is called an XC-algebra.
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An XC-algebra is the minimum algebraic structure needed to define a framed,
oriented knot invariant.

Proposition

If (A, R, x) is an XC-algebra, then the same construction of 3 4(K) € A from above
gives rise to a well-defined knot invariant.
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A few examples of XC-algebras

1. Any ribbon Hopf algebra (H, R, v) has an underlying XC-structure

(H,R,x :=uv™ ).
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A few examples of XC-algebras

1. Any ribbon Hopf algebra (H, R, v) has an underlying XC-structure
(H,R,x :=uv™ ).
2. If (H, R, v) as before, any (V, p) € H-mod induces an XC-algebra

(Endy(V), (0 @ 0)(R), o(K)).
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A few examples of XC-algebras

1. Any ribbon Hopf algebra (H, R, v) has an underlying XC-structure
(H,R,x :=uv™ ).
2. If (H, R, v) as before, any (V, p) € H-mod induces an XC-algebra

(Endy(V), (0 @ 0)(R), o(K)).

3. There are XC-structures that do not have a ribbon Hopf-algebraic origin:
on the Sweedler algebra SW = (s, w|s* = 1,w? = 0)

R=11+(A+s+w+sw)Q(+w+sw) , k:=—Ss—w—sw.
We have

3sw( Q) = —1—2(s +w+sw) & Z(SW) = k1.
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A few honest examples

Setk := Z[g,q '] and A := Endy(k?) = My (k).

Proposition

The elements
(10 q 0> (o 0) (q—1 0)
R'_(o 0)®(0 )T )% g

+a-1(; o)o (1 o) €4”

and

define a (traced) XC-structure on A.
Furthermore, for a O-framed knot K we have that

34(K) = J2(K) o1y - Idga.
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Setk := Z[q,q '] and A := Endy(k?) = My (k).

Proposition

The elements

k=5 0)o (% )+ Ve

and )
— (1 0 )
K .= (0 7q2 € A

define a (traced) X C-algebra structure on A.
Furthermore, for a O-framed knot K we have that

3a(K) = A(K)Mzztl/z : Id]kz.

Y

1\ _ (0 0 -
e ea
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The Dilbert algebra is

DLB = (d,1,bldl =d, db=1—1, b =b, > = [ = bd, others = 0).

Proposition

The elements
R=1®1-201-)®I1+2b®d , K= 1i(1 — 2I)

define a (traced) XC-algebra structure on DLB.
Furthermore, for a O-framed knot K we have that

3pLe(K) = A(K)(—1).
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Theorem (B., to appear hopefully next week)

Any XC-algebra structure on the Sweedler algebra SW produces a framed knot
invariant that only depends on the framing.
In particular, such an invariant is trivial for any O-framed knot:

3sw(K) =1.
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Categorical framework

Most of the constructions in quantum topology are categorical/functorial
(TQFTs, RT invariant, lasagna skein modules, K/ Lee homology;,...). The
universal invariant did not have one even in the ribbon Hopf algebra setting.
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Categorical framework

Most of the constructions in quantum topology are categorical/functorial
(TQFTs, RT invariant, lasagna skein modules, K/ Lee homology;,...). The
universal invariant did not have one even in the ribbon Hopf algebra setting

TP := monoidal category of framed, oriented tangles in a cube

without closed components whose strands are oriented
from bottom to top.
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Categorical framework

Most of the constructions in quantum topology are categorical/functorial
(TQFTs, RT invariant, lasagna skein modules, K/ Lee homology;,...). The
universal invariant did not have one even in the ribbon Hopf algebra setting.

TP := monoidal category of framed, oriented tangles in a cube

without closed components whose strands are oriented
from bottom to top.

{
\/\\]
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Categorical framework

Most of the constructions in quantum topology are categorical/functorial
(TQFTs, RT invariant, lasagna skein modules, K/ Lee homology;,...). The
universal invariant did not have one even in the ribbon Hopf algebra setting

TP := monoidal category of framed, oriented tangles in a cube

without closed components whose strands are oriented
from bottom to top.

o 6
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Given an XC-algebra (A, R, k), the universal invariant can be defined similarly
for upwards tangles:
T J

(UBE) d quantum knot in 20 January 2025



Given an XC-algebra (A4, R, k), the universal invariant can be defined similarly
for upwards tangles:

34(T) =Y Beaifi ® Brpjoirc &ty € A® A,
ijlr
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Theorem (B. 2024)

Let (A, R, k) be an XC-algebra. There exists a monoidal category E(A) and a strict
monoidal full functor

Zy TP — S(A)
which encodes the universal invariant 3 4:
Za(T) = (34(T), o7).

Furthermore, this functor in fact arises in a canonical way — from a universal
property.

If A is equipped with a trace, then one can in fact extend the construction to a
functor
Za:TT — EMA)

encoding 34 also arising canonically.
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This setting allows to a functorial comparison with the Reshetikhin-Turaev
invariant RTy : TP — H-mod.
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This setting allows to a functorial comparison with the Reshetikhin-Turaev
invariant RTy : TP — H-mod.
Theorem (B. 2024)

Let H be a ribbon Hopf algebra and let V be a finite-free H-module. Then the
Reshetikhin-Turaev invariant RTy factors through Zp;:

TupP S H-mod

-t
Z -
HJ, oy

E(H)

That is, RTy(T) = py(Zy(T)) for any upwards tangle T. In other words, this
diagram categorifies the equality

RTy(K) = p(3u(K))

seen before.
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If H is ribbon and V an H-module, we can produce two functors:
RTy : Tt — H-mod ,  Zggyvy: T — EEndy(V)).

It turns out that these two invariants are essentially the same.
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If H is ribbon and V an H-module, we can produce two functors:
RTy : TT — H-mod ,  Zgnayv): T~ — EEndy(V)).
It turns out that these two invariants are essentially the same.

Theorem (B. 2024)

Let H be a ribbon Hopf algebra and let V be a finite-free H-module. Then we have the
following commutative diagram:

ZEnoV \

EEndR(W)) <-------=------- > H-mod

with 1y a monoidal embedding. That is, viewing E(End(V)) as a traced monoidal
subcategory of H-mod, the functors Zgngq, (v) and RTy coincide.
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Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and virtual crossings
—the latter are really not there!- modulo appropriate Reidemeister moves.
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Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and virtual crossings
—the latter are really not there!- modulo appropriate Reidemeister moves.

vT P := monoidal category of virtual (framed!) upwards tangles
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Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and virtual crossings
—the latter are really not there!- modulo appropriate Reidemeister moves.

vT P := monoidal category of virtual (framed!) upwards tangles
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Extension to virtual tangles

A virtual knot is a knot diagram with positive, negative and virtual crossings
—the latter are really not there!- modulo appropriate Reidemeister moves.

vT P := monoidal category of virtual (framed!) upwards tangles

Virtual knot = Gauss diagram on 1
Virtual upwards tangle = Gauss diagram on I, 1. J

cerra (UBE) XC-algebras and quantum knot invariants 20 January 2025



Theorem (B. 2025)
If A is an XC-algebra, then there exists a monoidal category vE(A) and a functor

Za v — US(A)

extending the universal invariant of upwards tangles,

T A, g(A)

| I

o 24, vE(A)

More naturally, Z 4 extends to the category TX¢ of XC-tangles, a class of
decorated abstract graphs that consists of the exact geometrical counterpart of
XC-algebras.
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Combining the last two theorems:

Let H be a ribbon Hopf algebra and let V be a finite-free H-module. Then the
invariant
ZEnd]k(V) 20T — US(Endk(V))

extends the Reshetikhin-Turaev invariant RTy : TP — H-mod to virtual
upwards tangles.
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iGracias por su atencion!

Thank you — Dank u wel — Merci
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