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Modern knot theory is tied to the area of quantum topology that arose in the 1980s after the work of
the Fields medallists V. Jones, V. Drinfeld and E. Witten (the three of them in 1990). Roughly speaking,
in classical algebraic topology one constructs algebraic invariants of topological spaces by means of
using only data from the space itself. Well-known examples are: (co)homology, homotopy groups, K-
theory, etc. If you happen to have a manifold instead of just a space, you may get better properties (e.g.
Poincaré duality).

Quantum topology often (and today) lies in the realm of low-dimensional topology, so our ana-
logues of spaces are knots and links in S3 (ie embeddings of one or several copies of S1) and smooth
manifolds of dimension at most four. Now we want to construct algebraic invariants of one of these
objects associated to the extra data of an algebraic object A. Some examples are:

• For knots and links, A can be a ribbon Hopf algebra [Law89], or it can be a certain power series in
two variables [LM96], or it can also be a tortile (aka ribbon) category [Tur16].

• For 3-manifolds, A could be a ribbon Hopf algebra [Hen96], it can be a certain power series in two
variables [LMO98], or it can be a modular category (a tortile category with more structure) [Tur16].
This is extremely related with the previous item via the Lickorish-Wallace theorem stating that
any (closed, connected, oriented) 3-manifold can be obtained from a link with integers attached to
every component by a process called surgery (homotopy theorists may know this as the fact that
the third oriented cobordism group vanishes, ΩSO

3
∼= π3(MSO) ∼= 0).

• For 4-manifolds, A can be a modular category [Tur16].

In this talk we will focus on the two first cases of the first item.

1 The category of tangles

Rather than just talking about knots and links, it is more convenient to generalise a bit and talk instead
about “pieces of knots”.

An (oriented, framed) tangle is an embedding L of finitely many copies of I× I and I× S1 into the cube
I3, proper in the sense that L−1(∂I3) = qI × ∂I and the segments I × 0, I × 1 are uniformly distributed
along I× 1/2× ∂I with the same orientation. The cores 1/2× I and 1/2× S1 are required to be oriented.
We regard tangles up to isotopy (ie a homotopy that needs to be an embedding at all times) rel. qI× ∂I.

Figure 1a shows an example of a tangle. Keeping in mind that a strip with a full twist is the same
as a strip with a “ϕ” shape which we only see one of their faces, it is more common to draw only the
oriented cores of a tangle with the “blackboard framing”, that is, one has to make the strip parallel to
the blackboard they have been drawn before. See Figure 1b.

By attaching a sign “+” or “−” to every endpoint of the tangle strands at the the bottom and top
of the cube, depending whether the orientation is up or down respectively, we obtain two sequences of
signs, that we call the source (at the bottom) and target (at the top). This allows us to organise tangles
into a (strict) monoidal category T :

• its objects are elements of Mon(+,−), the free monoid on the set {+,−},

• a morphism between elements s and t are isotopy classes of tangles with source s and target t,
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Figure 1

• the composite L2 ◦ L1 consists of stacking L2 on top of L1,

• the identity of w ∈ Mon(+,−) consists of |w| parallel vertical lines with the orientation being
up/down depending whether the sign is + or −,

• the monoidal product is given by concadenation at the level of objects and L1 ⊗ L2 consists of
placing L2 to the right of L1,

• the unit of the monoidal structure is the empty tangle.

2 Ribbon Hopf algebras

The universal tangle invariant is the main idea of this talk, and it is based on the concept of ribbon Hopf
algebra.

Recall that a Hopf algebra over a ring k is a k-module A endowed with an algebra structure (A, µ, η),
a coalgebra structure (A, ∆, ε) (compatible in the sense that the coalgebra structure maps are algebra
morphisms), and an isomorphism S : A −→ A, called the antipode, which is the inverse of IdA in the
convolution monoid Homk(A, A), that is

m(S⊗ Id)∆ = ηε = m(Id⊗ S)∆.

A quasi-triangular Hopf algebra is a Hopf algebra A together with a preferred invertible element R ∈
A⊗ A, called the universal R-matrix, satisfying the following properties:

(∆⊗ Id)R = R13 · R23 (1)
(Id⊗ ∆)R = R13 · R12 (2)

τ∆ = R · ∆(−) · R−1 (3)

where R12 := R⊗ η, R13 := (Id⊗ τ)R12 and R23 := η ⊗ R, where we put τ(x ⊗ y) = y⊗ x. We will
write R = ∑i αi ⊗ βi for the universal R-matrix and R−1 = ∑i αi ⊗ βi for its inverse.

A ribbon Hopf algebra is a quasi-triangular Hopf algebra A together with a preferred invertible ele-
ment κ ∈ A, called the balancing element satisfying

∆(κ) = κ ⊗ κ (4)
ε(κ) = 1 (5)

κ2 = u · S(u−1) (6)

S2 = κ · (−) · κ−1 (7)

where u := µ(S⊗ IdA)R21 = ∑i S(βi) · αi is called the Drinfeld element and u−1 := µ(IdA ⊗ S2)R21 =
∑i βi · S2(αi) is its inverse. Here we wrote R21 = τ(R).

An important property of a ribbon Hopf algebra is that the universal R-matrix satisfies the so-called
Yang-Baxter equation,

R12R13R23 = R23R13R12. (8)
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3 The universal invariant

Let L be an open, upwards tangle, that is, a tangle with no closed components (embeddings of I × S1)
and that it is an element of HomT (+n,+n). Suppose besides that L has n components and that they are
ordered.

Given a ribbon Hopf algebra A as in the previous section, we associate to each such L an element
ZA(L) ∈ A⊗n as follows: we place beads representing the elements 1, R±1 and κ±1 in a diagram of L
according to Figure 2. Now for 1 ≤ i ≤ n, let ZA(L)(i) be the (formal) word given by writing from left
to right the labels of the beads in the i-th component according to the orientation of the strand. Then
put

ZA(L) := ∑ ZA(L)(1) ⊗ · · · ⊗ ZA(L)(n) ∈ A⊗n

where the summation runs through all subindices in R±1. Figure 3 shows an example for the trefoil
knot 31.

Theorem 3.1 ZA is an isotopy invariant of tangles.

Proof sketch. Any two isotopic tangles are related by a sequence of moves called the Reidemeister moves
(also called Turaev moves in this context). Some of these moves are the shown in Figure 4a and 4b.
These two pairs of tangles get same invariant because of the invertibility of R and the Yang-Baxter
equation (8), respectively. See [Oht02b] for a full proof.

Remark 3.2 The universal invariant ZA can be made into a strong monoidal functor, even into a mon-
oidal natural transformation in a more flexible context where tangles are not embedded in the cube but
instead they are viewed as graphs, see [Bec22b].

(a)
(b)

Figure 4
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Remark 3.3 We would like to point out that by restricting to open tangles we still encode knots.
More precisely, there is a one-to-one correspondence between isotopy classes of open,upwards, one-
component tangles (rel. I × ∂I) and isotopy classes of knots, by considering the canonical closure of the
(1, 1)-tangle. So we will freely call knots to open, upwards, one-component tangles.

The classical example of a ribbon Hopf algebra is a quantum group [Kas95], ie a “quantisation” Uh(g)
of the universal enveloping algebra U(g) of a finite-dimensional semisimple complex Lie algebra (this
is a topological C[[h]]-module). The word “quantisation” means that Uh(g)/hUh(g) ∼= U(g) as C-
algebras and that Uh(g) ∼= U(g)[[h]] as C[[h]]-modules. However, we will focus on a (topological)
ribbon Hopf algebra D [BNvdV21] over the ring Qε[[h]], where Qε := Q[ε]. As a topological Qε[[h]]-
module, D ∼= Qε[y, t, a, x][[h]], that is, it is a (topologically) free Qε[[h]]-module. This Hopf algebra arises
from a construction called Drinfeld double [Kas95] and it is related to Uh(sl2).

The computation of the universal invariant ZA for a quantum group Uh(g) turns out to be not feas-
ible: one has to perform infinite many non-commutative multiplications and there is no known way of
doing this in an efficient way. However, in the algebra D the parameter ε plays a crucial role: it allows
us to truncate the universal invariant leaving us with a “simpler” invariant.

Claim 3.4 ([BNvdV19, BNvdV21]) For any N > 0, the universal invariant ZD(L) (mod εN) can be effect-
ively computed (in polynomial time).

The main ingredient of this is the so-called Gaussian calculus, which roughly speaking consists of
turning a linear map into a perturbed exponential expression representing a power series, with rules
to perform the composite of the linear maps using the exponential expressions. We refer the reader to
[BNvdV21] and [Bec22a].

For the following key theorem we need one definition. Given a knot K, let K0 and K1 be the embed-
dings of 0× I and 1× I. The framing of K is the integer

fr(K) :=
1
2 ∑

p∈K0∩K1

sign(p)

(p refers to the crossing) where sign(p) = 1 if the crossing is positive and sign(p) = −1 if it is negative.

Theorem 3.5 ([BNvdV21]) For any 0-framed knot K, there exist knot polynomial invariants

ρ
k,j
K ∈ Q[t, t−1],

k ≥ 0, 0 ≤ j ≤ 2k, such that

ZD(K) =
∞

∑
k=0

(
2k

∑
j=0

hk+j ρ
k,j
K (T)

∆2k+1−j
K (T)

wj

)
εk

where T := e−ht and w are central elements.

In the statement above, ∆K(t) ∈ Z[t + t−1] is the Alexander polynomial of K (as unframed knot).
This is a classical knot polynomial invariant with a well-understood topological interpretation [Lic97]:
let XK := S3 − N(K) be (the closure of) the complement of a tubular neighbourhood of a knot K in

S3, and let X̃K
ab

be its universal abelian cover, that is the covering X̃K
ab −→ XK corresponding to

Ker(π1(XK) −→ π1(XK)
ab ∼= Z). The Galois group or group of deck transformations of the covering

is then Z = 〈t〉. This group induces a structure of Z[〈t〉] = Z[t, t−1]-module on H1(X̃K
ab

;Z). The Alex-
ander polynomial is an algebraic invariant of this module: it is the generator of the minimal principal
ideal which contains the 0-th elementary ideal of the module or ideal generated by the maximal order

minors of any presentation of the Z[t, t−1]-module H1(X̃K
ab

;Z). Note this is defined only up to invert-
ibles of Z[t, t−1], ie multiplication by±t±n. Here we have normalised the Alexander polynomial so that
∆K(t) = ∆K(t−1) and ∆K(1) = +1.

One would expect the collection of polynomials ρ
k,j
K to be brand new invariants (or at least a subset of

these). However, both theoretical and experimental results suggest that the first nontrivial polynomial
ρ1,0

K (it is a fact that ρ0,0
K = 1 for any knot K) coincides with a not-very-well-understood, hard to compute

knot polynomial invariant ΘK, called the 2-loop polynomial, that arises from the most powerful knot
invariant up to date, that we describe in the next section.
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Conjecture 3.6 ([BNvdV19, BNvdV21]) For a 0-framed knot K, the polynomial ρ1,0
K coincides with the 2-loop

polynomial ΘK of K.

In the following section we will briefly sketch how this polynomial arises.

4 The Kontsevich invariant and the 2-loop polynomial

The Kontsevich invariant [Kon93] is a tangle invariant that depends on a choice of Drinfeld associator,
a certain element of Q〈〈X, Y〉〉, the ring of formal power series in two noncommutative variables X, Y
(although for knots and links the invariant is independent of this choice). The Kontsevich invariant is
(one of) the strongest knot invariant(s) we know; in fact it is a conjecture that the Kontsevich invariant
distinguishes all (oriented) knots [Oht02a]. Moreover, it is known that it dominates a large family of
knot invariants, called the Reshtikhin-Turaev invariants, that have been extensively studied for the last 30
years.

The invariant can be arranged as a strong monoidal functor [LM96, Oht02b, HM21]

Z : Tq −→ Â

where

• Tq is the nonstrictification of the category of tangles T , which is a nonstrict monoidal category mon-
oidally equivalent to T . Its objects are the elements of Mag(+,−), the free unital magma on the
set {+,−} (that is parenthesised sequences of signs). There is an obvious map U : Mag(+,−) −→
Mon(+,−) that forgets parentheses. A map w −→ w′ in Tq is by definition a map Uw −→ Uw′ in
T .

• Â is the (degree-completion of the) category of Jacobi diagrams

We will not go into how the category Â is defined. The important bit is that for a (long) knot K,
the value Z(K) is an infinite linear combination with rational coefficients of unitrivalent graphs. For
instance, one can show that

Z(unknot) = ∅ +
1

48
+

1
23040

+ · · · .

In fact the previous expression is actually given by an exponential [BNLT03]:

Z(unknot) = expq

 ∑
m≥1

b2m

...
2m legs


where for a unitrivalent graph D, expq(D) := ∅ + D + 1

2 D q D + · · · , extended linearly; and b2m are

the modified Bernoulli numbers, ∑m≥1 b2mX2m := 1
2 log

(
sinh(X/2)

X/2

)
∈ Q[[X]].

In fact these two features of the value of the Kontsevich invariant of the unknot, namely the ex-
ponentiation and the legs, are common to all knots. More precisely, a connected unitrivalent graph is
called n-loop if its Euler characteristic is χ(D) = 1− n. It is known [Kri00, GK04] that the Kontsevich
invariant of has a loop expansion

Z(K) = expq

∑
i

λi

...

+ ∑
i

µi

...

...

...

+ (n ≥ 3 - loop terms )


The first summand, that is the 1-loop part, can be shown to be tantamount to the Alexander poly-

nomial ∆K of the knot. The second summand, ie the 2-loop part, can be shown to be tantamount to
a fully symmetric Laurent polynomial Θ′(t1, t2) ∈ Q[t±1

1 , t±1
2 ], which is called the (unreduced) 2-loop

polynomial. Here “fully symmetric” means that Θ′(t1, t2) = Θ′(t±1
i , t±1

j ) for {i, j} = {1, 2}.
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Remark 4.1 It turns out that this unreduced 2-loop polynomial Θ′(t1, t2) is a strong polynomial invari-
ant. More specifically, it is able to detect mutation [Mor15], a operation on knots consisting on removing
a piece of the knot, rotate it and glue it back to create a new knot. This process creates pairs of knots
that are indistinguishable from the point of view of classical knot polynomial invariants (they have the
same HOMFLY-PT and Kauffman polynomials, and hence the same Alexander and Jones polynomials).

The polynomial appearing in the conjecture above is a reduced version of this one, by letting the
second variable be 1,

Θ(t) := Θ′(t, 1) ∈ Q[t + t−1] ⊂ Q[t, t−1].

5 Merging of the two worlds

Recently we have given a positive answer to the conjecture for a particular class of knots. Recall that a
knot in S3 has genus ≤ 1 if it bounds a compact, connected, oriented surface of genus one in S3.

Theorem 5.1 ([Bec22a]) The Conjecture 3.6 holds for knots of genus ≤ 1, that is,

ρ1,0
K (t) = ΘK(t)

if genus(K) ≤ 1.

The proof is quite technical and heavily relies on the so-called Gaussian calculus. Developing this
tool would take a full mini-course, so here we would only like to give an idea of the argument.

The main point is that every knot K of genus ≤ 1 arises as the thickening of an open, upwards 2-
component tangle L, as depicted in Fig 5. Closing up the open component allows to see the genus 1
surface that bounds K = Th(L).

L K = Th(L)

Th

Figure 5

Ohtsuki [Oht07] has given a closed expression for ΘK for such a genus ≤ 1- knot K in terms of well-
known integral invariants of L; namely the linking matrix of L and Vassiliev invariants of order 2 and 3
of L [Oht02b].

It turns out that there is an algebraic analogue of the thickening map

|Th : D⊗D −→ D

such that
ZD(K) = ZD(Th(L)) = |Th(ZD(L))

(this uses the Hopf algebra structure maps), hence all one has to study is

ZD(L) ∈ D⊗D ∼= Qε[y1, t1, a1, x1, y2, t2, a2, x2][[h]].

The key point in the argument is that this element depends exactly on the same integral invariants as
Ohtsuki’s expression for the 2-loop polynomial, and the algebraic thickening map |Th rearranges these
terms giving the equality in the theorem.
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