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Hopeless outlook

Theorem (Lee 2005, paraphrase)

As a link invariant, Lee homology is terrible: we have

Q?, i=0
0, else

Lee' (K) = {

for any knot K, and for a link L the groups Lee' (L) will be fully determined by the linking
matrix of L.
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Hopeless outlook

Theorem (Lee 2005, paraphrase)

As a link invariant, Lee homology is terrible: we have

Q?, i=0
0, else

Lee' (K) = {

for any knot K, and for a link L the groups Lee' (L) will be fully determined by the linking
matrix of L.

BUT there is hope!
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Hopeful outlook

1. There is a spectral sequence

E1 = Kh**(L) = Lee* (L),
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Hopeful outlook

1. There is a spectral sequence

E1 = Kh**(L) = Lee* (L),

2. In the spectral sequence, there is s(K) € 2Z such that the two surviving generators
in the E-page have filtration degrees s(K) £ 1.
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Hopeful outlook

1. There is a spectral sequence

E1 = Kh**(L) = Lee* (L),

2. In the spectral sequence, there is s(K) € 2Z such that the two surviving generators
in the E-page have filtration degrees s(K) £ 1.

This is called the Rasmussen s-invariant, which gives

e A concordance invariant
s:CM — 27,

o A lower bound for the slice genus,
[s(K)| < 2¢3"(K),

o Knots that are topologically slice (e.g. Ax = 1) but not smoothly slice (e.g. s(K) # 0)
can be used to produce exotic R’s.
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Quick review of Kh

Bar-Natan’s construction of the Khovanov complex of a link diagram D can be split
into a two-step functor

{0,1}*" = P(cr(D)) —> Coby o grVectg

o = induced by choosing an order in cr(D),

@ res replaces every crossing X by its O-resolution X or its 1-resolution > (
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Quick review of Kh

Bar-Natan’s construction of the Khovanov complex of a link diagram D can be split
into a two-step functor

{0,1}*" = P(cr(D)) —> Coby o grVectg

o = induced by choosing an order in cr(D),

@ res replaces every crossing X by its O-resolution X or its 1-resolution ><
There is a correspondence

24 TQFTs —» comFrobg,
and one takes
V:=Qx]/(x**)=Q-1®Q-x

with 1 primitive and x grouplike. Additionally V is graded with p-degrees defined as
p-deg(l) =1, p-deg(x) = —1.
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Quick review of Kh

For a link diagram D, let
ny =#%0 n-o=#%" n=ny+n_
and for w € {0,1}*",
o] =#1's c=#mres(n)) ,  Vy:=VE{|a|+n, —2n_}.

(curly brackets denote a shift in the p-degree).
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Quick review of Kh

For a link diagram D, let

ny =#%¢ , no =#% , n=ny+n_
and for w € {0,1}*",
lo| =#1"s ky = # o (res(a)) , Vi = Ve {|a| +ny —2n_}.

(curly brackets denote a shift in the p-degree).
Define )
Cxn(D):= P Va
|o¢|:§c+n,

with differentials di,, : Ci, (D) — Ci}1(D) an alternated sum of tensors of
(co)multiplications and id’s of V. This is a cochain complex of graded vector spaces.
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Quick review of Kh

Example: for D = ' we have

V{-3}

V{-4) / \ Vi{-2)

B2 O
\®D/

V{-3}

0 —— Cif (D) —— Cgr(D) ——— C%,(D) —— 0
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Quick review of Kh

Theorem (Khovanov, Bar-Natan)

The chain homotopy type of Cy,, (D) is a link invariant.

Hence the Khovanov homology groups
Ki'i(D) := H'(CZ/(D))

are link invariants.
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Quick review of Kh

Theorem (Khovanov, Bar-Natan)

The chain homotopy type of Cy,, (D) is a link invariant.

Hence the Khovanov homology groups
Ki'i(D) := H'(CZ/(D))

are link invariants.

By construction
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A natural question

For what other Frobenius algebras (aka 2d TQFTs) does this construction produce a
link isotopy invariant?
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A natural question

For what other Frobenius algebras (aka 2d TQFTs) does this construction produce a
link isotopy invariant?

For ¢, h,t € Qwith ¢ # 0, let
Acpt = Qx]/(x* —hx —t)
(this is 2-dimensional as a vector space) with bialgebra structure given by

Al)=1lx®l+10x—n(1®1) , €1)=0
Alx) =lx®x+t1®1)) , e(x) =c.
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A natural question

For what other Frobenius algebras (aka 2d TQFTs) does this construction produce a
link isotopy invariant?

For ¢, h,t € Qwith ¢ # 0, let
Acpt = Qx]/(x* —hx —t)
(this is 2-dimensional as a vector space) with bialgebra structure given by

Al)=1lx®l+10x—n(1®1) , €1)=0
Alx) =lx®x+t1®1)) , e(x) =c.

Note: ALO,O =V.
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h, t € Q with ¢ # 0.
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h, t € Q with ¢ # 0.

About the proof. Consider the following two diagrams of the unknot:

< . -
Ve N / ~ ~ - \
/ | 7
( | | |
\ ) \ e
\ ,/ AN J
. / N S~
0 0

0—A—0 , 0—A—ARA—0O.
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h, t € Q with ¢ # 0.

About the proof. Consider the following two diagrams of the unknot:

\ ? . X
// | ,/// \\\\ ~

0 0
0—A—0 , 0—A—ARA—0O.

dim A = —dim A + (dim A)?,
iedim A = 2.
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h,t € Q with ¢ # 0.

About the proof (cont). So we must have A = Q- 1@ Q- x with x> = hx + ¢ - 1 for
some 11, t € Q, ie as an algebra A = Q[x]/(x? — hx — t).
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h,t € Q with ¢ # 0.

About the proof (cont). So we must have A = Q- 1@ Q- x with x> = hx + ¢ - 1 for
some 11, t € Q, ie as an algebra A = Q[x]/(x? — hx — t).

Claim: ¢(1) = 0.
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h,t € Q with ¢ # 0.

About the proof (cont). So we must have A = Q- 1@ Q- x with x> = hx + ¢ - 1 for
some i,t € Q, ie as an algebra A = Q[x]/ (x> — hx — t).

Claim: (1) = 0. This follows from the fact that the 2-step functor described above
must factor through Add(ZCob,)/S, T, 4Tu (this defines Bar-Natan’s universal
geometric theory). S is essentially this condition.
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A natural question

Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction,
then A is isomorphic to A, ; for some ¢, h,t € Q with ¢ # 0.

About the proof (cont). So we must have A = Q- 1@ Q- x with x> = hx + ¢ - 1 for
some i,t € Q, ie as an algebra A = Q[x]/ (x> — hx — t).

Claim: (1) = 0. This follows from the fact that the 2-step functor described above
must factor through Add(ZCob,)/S, T, 4Tu (this defines Bar-Natan’s universal
geometric theory). S is essentially this condition.

Remaining of the proof: A 2-dimensional Frobenius algebra with ¢(1) = 0 is
isomorphic toa A, ; (in fact c = £(x)). See the handout for details. O
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Lee homology

Set W := Al,O,l' EXpliCitly,
W =Q[x]/ (x> —1)
with
Al)=x®1+1x e(1)=0
Ax)y=x®x+1®1 e(x) =1.
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Lee homology

Set W := Al,O,l' EXpliCiﬂy,
W =Q[x]/ (x> —1)
with

Al)=x®1+1®x , e(1)=0
Ax)y=x®x+1®1 e(x) =1.

The cochain complex obtained from this Frobenius algebra W using the construction
above will be denoted C; (D),

Ciee(D) = @ W,

|v¢|:?+n,
with a new differential d; ., and its cohomology groups
Leei(L) = H' (Clee(D))

will be called the Lee homology groups.
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Lee homology

Surprisingly, the Khovanov and Lee homologies are essentially the only link homology
theories that one can produce:
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Lee homology

Surprisingly, the Khovanov and Lee homologies are essentially the only link homology
theories that one can produce:

Theorem (Mackaay, Turner, Vaz 2007)

The (rational) link homology theory produced by the Frobenius algebra A, ; is isomorphic to
1. Khovanov homology, if h* + 4t = 0,
2. Lee homology, ifh2 +4t £ 0.

See the handout for a proof.

Jorge Becerra (UBE) Lee homology and the Lee spectral sequence 23 October 2025



Lee degeneration

If L = U;L; ordered, oriented n-component link, denote by L*" the underlying
unoriented link.

L*" admits 2" possible orientations, and the set of them will be denoted by Or(L*").
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Lee degeneration

If L = U;L; ordered, oriented n-component link, denote by L*" the underlying
unoriented link.

L*" admits 2" possible orientations, and the set of them will be denoted by Or(L*").
Given 6 € Or(L""),let Ey C {1,...,n} be the subset of components of L whose original
orientation must be reversed to get the orientation 8, and write Ep:= {1,...,n} — Eq.
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Lee degeneration

If L = U;L; ordered, oriented n-component link, denote by L*" the underlying
unoriented link.

L*" admits 2" possible orientations, and the set of them will be denoted by Or(L*").
Given 6 € Or(L""),let Ey C {1,...,n} be the subset of components of L whose original
orientation must be reversed to get the orientation 6, and write Ep:= {1,...,n} — Eq.

Theorem (Lee 2005)

Let L = U;L; be an oriented n-component link in S3. There exists a bijection between
orientations 6 € Or(L*") and a set of generators sg of the Lee homology of L,

Lee*(L) = € Q-sy,

6€Or(L1m)

in particular
dim Lee® (L) = 2".

Moreover, the (homological) degree of every generator is given by

deg(sg) =) Z Zk(Ll', L])
i€Ey, jEEy
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Lee degeneration

Immediate consequences:

Lee homolo; . sequence



Lee degeneration

Immediate consequences:

o Lee!(L) = 0if i is odd.
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Lee degeneration

Immediate consequences:
o Lee'(L) = 0ifiis odd.
@ For any oriented knot K, we have

Q% p=0,

Lee? (K) = 0 else

Lee homol > Lee sequence



Lee degeneration

Immediate consequences:
o Lee'(L) = 0ifiis odd.
@ For any oriented knot K, we have

Q% p=0,

0, else

Leef (K) = {

@ For a two-component link L = L U L, we have

Q% p=0,2-tk(Ly,Ly),
0, else ’

Lee? (L) = {
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Lee degeneration

Theorem (Lee 2005)

Lee*(L)=~ @ Q-sp , deg(sp) =2 Y  Llk(L;iLj).
6€O0r(Lum) i€Ey, jEEp

About the proof. Given orientation 6 € Or(L""), let ay denote the oriented resolution of
a diagram D of L, obtained by resolving every < or < with )(, equipped with the
inherited orientation. res(xg) = &y is a disjoint union of oriented circles on the plane.
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Lee degeneration

Theorem (Lee 2005)

Lee*(L)=~ @ Q-sp , deg(sp) =2 Y  Llk(L;iLj).
6€O0r(Lum) i€Ey, jEEp

About the proof. Given orientation 6 € Or(L""), let ay denote the oriented resolution of
a diagram D of L, obtained by resolving every < or < with ><, equipped with the
inherited orientation. res(xg) = &y is a disjoint union of oriented circles on the plane.

Divide 7p(ag) = 74 (ap) 11 7§ () into two groups as follows:
o v € mf(up) if either

e it has O orientation and separated from oo by an even # of circles, or
e ithas O orientation and separated from co by an odd # of circles

o v € 18 (ng) otherwise
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Lee degeneration

Theorem (Lee 2005)

Lee*(L)=~ @ Q-sp , deg(sp) =2 Y  Llk(L;iLj).
6€O0r(Lum) i€Ey, jEEp

About the proof. Given orientation 6 € Or(L""), let ay denote the oriented resolution of
a diagram D of L, obtained by resolving every < or < with ><, equipped with the
inherited orientation. res(xg) = &y is a disjoint union of oriented circles on the plane.

Divide 7p(ag) = 74 (ap) 11 7§ () into two groups as follows:

o v € mf(up) if either
e it has O orientation and separated from oo by an even # of circles, or
e ithas O orientation and separated from co by an odd # of circles

o v € 18 (ng) otherwise
Label 7 € 4! (ap) with a := x + 1 and 7 € 7§ (ap) with b := x — 1. This defines a chain
s € ClI="- (D).

Lee

Fact of life. The sy are cycles, ie d(sy) = 0, also s¢ := [sg] # 0 and they are linearly
independent.

Jorge Becerra (UBE) Lee homology and the Lee spectral sequence 23 October 2025



Lee degeneration

Theorem (Lee 2005)

Lee*(L)=~ @ Q-sp , deg(sp) =2 Y  Llk(L;iLj).
6€O0r(Lum) i€Ey, jEEp

About the proof. Given orientation 6 € Or(L""), let ay denote the oriented resolution of
a diagram D of L, obtained by resolving every < or < with ><, equipped with the
inherited orientation. res(xg) = &y is a disjoint union of oriented circles on the plane.

Divide 7p(ag) = 74 (ap) 11 7§ () into two groups as follows:
o v € mf(up) if either
e it has O orientation and separated from oo by an even # of circles, or
e ithas O orientation and separated from co by an odd # of circles
o v € 18 (ng) otherwise
Label 7 € 4! (ap) with a := x + 1 and 7 € 7§ (ap) with b := x — 1. This defines a chain
s € ClI="- (D).

Lee

Fact of life. The sy are cycles, ie d(sy) = 0, also s¢ := [sg] # 0 and they are linearly
independent.

Hence so dim Lee® (L) > 2". For < one uses the long exact sequence of Lee homology.
Degree formula: easy computation. O
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ShEaaaE

A spectral sequence is a collection of pairs (E;, d;),r > 1 where E, = EBM P bigraded
vector space, d, : E, — E, differential (d? = 0) of bidegree (r,1 —r) and

E, 1 = H(E,, d;). If the E, are bounded from below & the left, each bullet will reach a
stable value EXT.
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coomo SRR AN

1......2 3

A spectral sequence is a collection of pairs (E;, d;),r > 1 where E, = EBM P bigraded
vector space, d, : E, — E, differential (d? = 0) of bidegree (r,1 —r) and

E, 1 = H(E,, d;). If the E, are bounded from below & the left, each bullet will reach a
stable value EXT.

If N®* = N" is a graded vector space with each of the N" equipped with a filtration
F*N", to say that the spectral sequence converges to N* is to specify isomorphisms

Ei'~t =, i N* (.= FIN'"/F"IN")

and we simply write E/ = NP1, Over Q, this implies that N & EPA.
ply 1 P
p+q=n
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The spectral sequences of a filtered complex

Suppose C* is a cochain complex with (descending) filtration

.. C F'C* C anlc* C anzc* C... F4C* = C*
(typically u = 0 but not necessarily here). Its associated graded complex consists of the
cochain complexes gr"C* := F"C*/F'+1C*.
For every n, the filtration on C * induces a filtration on H" (C*), namely
F'H"(C*) := Im(H"(F'C*) — H"(C")). In particular we also have the associated
graded gr' H"(C*) := F'H"(C*)/F"1H"(C*), and we can talk of the filtration degree of
a given element in H" (C*).
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The spectral sequences of a filtered complex

Suppose C* is a cochain complex with (descending) filtration

.. C F'C* C anlc* C anzc* C... F4C* = C*
(typically u = 0 but not necessarily here). Its associated graded complex consists of the
cochain complexes gr"C* := F"C*/F'+1C*.
For every n, the filtration on C * induces a filtration on H" (C*), namely
F'H"(C*) := Im(H"(F'C*) — H"(C")). In particular we also have the associated
graded gr' H"(C*) := F'H"(C*)/F*1H"(C*), and we can talk of the filtration degree of
a given element in H" (C*).

Theorem (Leray 40s)

Let C* be a filtered cochain complex, and suppose that for every k, the filtration {F'Ck}; of C¥
has finite length. Then there is a spectral sequence

EPA = HPH(grPC*) = HPHI(CY)

convering to the cohomology of C*.

Explicitly, convergence means that

H"(C*) =~ p EX.

p+q=n
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The Lee spectral sequence

As QQ-vector spaces,
W=V=0Q13Qx, deg(1) =1, deg(x) = —1.

We denote as Cg . the g-degree j part. In fact, as vector spaces, ClL]e . = C;<]h =: CH.
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The Lee spectral sequence

As QQ-vector spaces,

W=V=0Q13Qx, deg(1) =1, deg(x) = —1.
We denote as Cg . the g-degree j part. In fact, as vector spaces, Cije . = C;<]h =: CH.
Key observation. As a linear map, the Lee differential d;,, restricts to

diLee = dé(h +d: Ci'/ N Ci+1,j & Ci+1,/+4
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The Lee spectral sequence

As QQ-vector spaces,
W=V=0Q13Qx, deg(1) =1, deg(x) = —1.

We denote as Cg . the g-degree j part. In fact, as vector spaces, Cije . = C;<]h =: CH.

Key observation. As a linear map, the Lee differential d;,, restricts to

Lee =dgy +®:CY — CHli g citlits

This is roughly because
ALee(x):x®3ﬁ+l§Ll ’ HLe(x®x)= 0+ 1
Agn(x)  @(x) i (x®x)  D(x©x)
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The Lee spectral sequence

As QQ-vector spaces,
W=V=0Q13Qx, deg(1) =1, deg(x) = —1.

We denote as Ci’j

e the g-degree j part. In fact, as vector spaces, C;fe . = C;<]h =: CH.

Key observation. As a linear map, the Lee differential d;,, restricts to

{ = diy + @ Cl s CHL gy O+

Lee
This is roughly because
ALee(x):x®3ﬁ+l§Ll ’ HLe(x®x)= 0+ 1
Agu(x)  @(x) wrn(x®@x)  P(x@x)
Upshot. F"'C],, := B>y CZEJE turns Cj,, into a filtered complex. Now the associated
graded is given by

grnc* _ Fnc*/Fn+1C* — ¥

with differential the g-degree-preserving part of dj .., that is dg;,. Therefore, the
cohomology groups of gr'’C* are exactly the Khovanov homology groups. Boom!
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The Lee spectral sequence

Theorem (Lee spectral sequence)

For any link L, there is a spectral sequence with E1-page given by Khovanov homology which
converges to Lee homology,

E} = KhPT9P(L) = LeeP™(L).

Furthermore, this spectral sequence has differential d, = 0 in the E,-page unless v € 4Z.
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The Lee spectral sequence

Theorem (Lee spectral sequence)

For any link L, there is a spectral sequence with E1-page given by Khovanov homology which
converges to Lee homology,

E} = KhPT9P(L) = LeeP™(L).

Furthermore, this spectral sequence has differential d, = 0 in the E,-page unless v € 4Z.

But... why should we care about this?
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The Lee spectral sequence in action!

Using isotopy invariance + value of the unknot + behaviour under IT + long exact
sequence we can compute for the right-handed trefoil T 3

) Qi) =(0,1),03), 25,69,
Kh"(Tp3) =40,  (i,j) = elsewhere except (2,7), (3,7),

@, (,j)=(27),37)
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The Lee spectral sequence in action!

Using isotopy invariance + value of the unknot + behaviour under IT + long exact
sequence we can compute for the right-handed trefoil T 3

) Qi) =(0,1),03), 25,69,
Kh"(Tp3) =40,  (i,j) = elsewhere except (2,7), (3,7),

@, (,j)=(27),37)

@ comes from the long exact sequence:

00— Kh2’7(T2,3) — QHQ — Kh3’7(T2,3) — 0,
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The Lee spectral sequence in action!

Using isotopy invariance + value of the unknot + behaviour under IT + long exact
sequence we can compute for the right-handed trefoil T 3

) Qi) =(0,1),03), 25,69,
Kh"(Tp3) =40,  (i,j) = elsewhere except (2,7), (3,7),

@, (,j)=(27),37)

@ comes from the long exact sequence:

0 — Kh?7(Tp3) — Q—Q — Kh37(Tp3) — 0,
Either
@ — is the zero map and @ =Q

@ — is an isomorphism and @ ~0
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The Lee spectral sequence in action!

f(?)=Q,

0 1 2 3 4 5 6 7 8 9 10

(recall Ef'T = KhP+ap).
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The Lee spectral sequence in action!

f(?)=Q,

1

0 1 2 3 4 5 6 7 8 9 10

(recall Ef'T = KhP+ap).
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The Lee spectral sequence in action!

f(?)=Q,

0 1 2 3 4 5 6 7 8 9 10

(recall Ef'T = KhP+ap).
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The Lee spectral sequence in action!

f(?)=Q,

0 1 2 3 4 5 6 7 8 9 10

(recall Ef"1 = KhP+4:P). Hence @ ~0,and s(Tr3) = 2.
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