Lee homology and the Lee spectral sequence

Jorge Becerra

Université Bourgogne Europe

Quantum Topology Seminar 23 October 2025

Handout available at bit.ly/jbecerra

Hopeless outlook

Theorem (Lee 2005, paraphrase)

As a link invariant, Lee homology is terrible: we have

$$Lee^{i}(K) = \begin{cases} \mathbb{Q}^{2}, & i = 0\\ 0, & \text{else} \end{cases}$$

for any knot K, and for a link L the groups $Lee^i(L)$ will be fully determined by the linking matrix of L.

Hopeless outlook

Theorem (Lee 2005, paraphrase)

As a link invariant, Lee homology is terrible: we have

$$Lee^{i}(K) = \begin{cases} \mathbb{Q}^{2}, & i = 0\\ 0, & \text{else} \end{cases}$$

for any knot K, and for a link L the groups $Lee^i(L)$ will be fully determined by the linking matrix of L.

BUT there is hope!

Hopeful outlook

1. There is a spectral sequence

$$E_1 = Kh^{*,*}(L) \Rightarrow Lee^*(L),$$

Hopeful outlook

1. There is a spectral sequence

$$E_1 = Kh^{*,*}(L) \Rightarrow Lee^*(L),$$

2. In the spectral sequence, there is $s(K) \in 2\mathbb{Z}$ such that the two surviving generators in the E_{∞} -page have filtration degrees $s(K) \pm 1$.

Hopeful outlook

1. There is a spectral sequence

$$E_1 = Kh^{*,*}(L) \Rightarrow Lee^*(L),$$

2. In the spectral sequence, there is $s(K) \in 2\mathbb{Z}$ such that the two surviving generators in the E_{∞} -page have filtration degrees $s(K) \pm 1$.

This is called the Rasmussen s-invariant, which gives

• A concordance invariant

$$s: \mathcal{C}^{sm} \longrightarrow 2\mathbb{Z}$$
,

• A lower bound for the slice genus,

$$|s(K)| \le 2g_4^{sm}(K),$$

• Knots that are topologically slice (e.g. $\Delta_K = 1$) but not smoothly slice (e.g. $s(K) \neq 0$) can be used to produce exotic \mathbb{R}^4 's.

Bar-Natan's construction of the Khovanov complex of a link diagram ${\cal D}$ can be split into a two-step functor

$$\{0,1\}^{\times n} \cong \mathbb{P}(\operatorname{cr}(D)) \xrightarrow{\operatorname{res}} \operatorname{Cob}_2 \xrightarrow{\operatorname{TQFT}} \operatorname{grVect}_{\mathbb{Q}}$$

- \cong induced by choosing an order in cr(D),
- ullet res replaces every crossing χ by its 0-resolution χ or its 1-resolution χ

Bar-Natan's construction of the Khovanov complex of a link diagram ${\cal D}$ can be split into a two-step functor

$$\{0,1\}^{\times n} \cong \mathbb{P}(\operatorname{cr}(D)) \xrightarrow{\operatorname{res}} \operatorname{Cob}_2 \xrightarrow{\operatorname{TQFT}} \operatorname{grVect}_{\mathbb{O}}$$

- \cong induced by choosing an order in cr(D),
- ullet res replaces every crossing $\mbox{$\swarrow$}$ by its 0-resolution $\mbox{$\swarrow$}$ or its 1-resolution $\mbox{$\searrow$}$

There is a correspondence

$$2d \text{ TQFTs} \xrightarrow{\simeq} \mathsf{comFrob}_{\mathbb{Q}}$$
,

and one takes

$$V := \mathbb{Q}[x]/(x^2) = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot x$$

with 1 primitive and x grouplike. Additionally V is graded with p-degrees defined as p-deg(1) = 1, p-deg(x) = -1.

For a link diagram D, let

and for $\alpha \in \{0,1\}^{\times n}$,

$$|\alpha|=$$
 # 1 's , $k_{\alpha}=$ # $\pi_0(\operatorname{res}(\alpha))$, $V_{\alpha}:=V^{\otimes k_{\alpha}}\{|\alpha|+n_+-2n_-\}.$

(curly brackets denote a shift in the *p*-degree).

For a link diagram D, let

and for $\alpha \in \{0,1\}^{\times n}$,

$$|\alpha|=$$
 # 1 's , $k_{\alpha}=$ # $\pi_0(\operatorname{res}(\alpha))$, $V_{\alpha}:=V^{\otimes k_{\alpha}}\{|\alpha|+n_+-2n_-\}.$

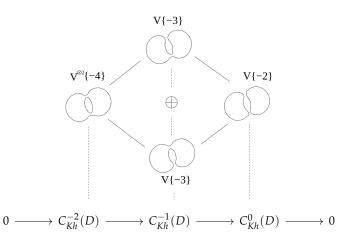
(curly brackets denote a shift in the *p*-degree).

Define

$$C^{i}_{Kh}(D) := \bigoplus_{\substack{\alpha \ |\alpha| = i+n_{-}}} V_{\alpha}$$

with differentials $d^i_{Kh}: C^i_{Kh}(D) \longrightarrow C^{i+1}_{Kh}(D)$ an alternated sum of tensors of (co)multiplications and id's of V. This is a cochain complex of graded vector spaces.

Example: for $D = \bigcirc$ we have



Theorem (Khovanov, Bar-Natan)

The chain homotopy type of $C_{Kh}^*(D)$ *is a link invariant.*

Hence the Khovanov homology groups

$$Kh^{i,j}(D) := H^i(C^{*,j}_{Kh}(D))$$

are link invariants.

Theorem (Khovanov, Bar-Natan)

The chain homotopy type of $C_{Kh}^*(D)$ is a link invariant.

Hence the Khovanov homology groups

$$Kh^{i,j}(D) := H^i(C^{*,j}_{Kh}(D))$$

are link invariants.

By construction

$$\chi_q(Kh^*(D)) = \chi_q(C_{Kh}^*(D)) = \widehat{J}(D).$$

Question

For what other Frobenius algebras (aka 2d TQFTs) does this construction produce a link isotopy invariant?

Question

For what other Frobenius algebras (aka 2d TQFTs) does this construction produce a link isotopy invariant?

For $c, h, t \in \mathbb{Q}$ with $c \neq 0$, let

$$A_{c,h,t} := \mathbb{Q}[x]/(x^2 - hx - t)$$

(this is 2-dimensional as a vector space) with bialgebra structure given by

$$\Delta(1) = \frac{1}{c}(x \otimes 1 + 1 \otimes x - h(1 \otimes 1)) \qquad , \qquad \varepsilon(1) = 0$$

$$\Delta(x) = \frac{1}{c}(x \otimes x + h(1 \otimes 1)) \qquad , \qquad \varepsilon(x) = 0$$

$$\Delta(x) = \frac{1}{c}(x \otimes x + t(1 \otimes 1))$$
 , $\varepsilon(x) = c$.

Question

For what other Frobenius algebras (aka 2d TQFTs) does this construction produce a link isotopy invariant?

For $c, h, t \in \mathbb{Q}$ with $c \neq 0$, let

$$A_{c,h,t} := \mathbb{Q}[x]/(x^2 - hx - t)$$

(this is 2-dimensional as a vector space) with bialgebra structure given by

$$\Delta(1) = \frac{1}{c}(x \otimes 1 + 1 \otimes x - h(1 \otimes 1)) \qquad , \qquad \varepsilon(1) = 0$$

$$\Delta(x) = \frac{1}{c}(x \otimes x + t(1 \otimes 1)) \qquad , \qquad \varepsilon(x) = c.$$

Note: $A_{1.0.0} = V$.

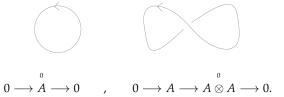
Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction, then A is isomorphic to $A_{c,h,t}$ for some $c,h,t\in\mathbb{Q}$ with $c\neq 0$.

Theorem (essentially Bar-Natan, explicit by Turner)

If A *is a Frobenius algebra producing a link isotopy invariant via the previous construction, then* A *is isomorphic to* $A_{c,h,t}$ *for some* $c,h,t \in \mathbb{Q}$ *with* $c \neq 0$.

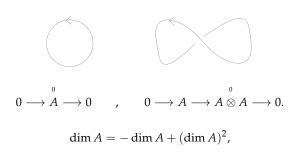
About the proof. Consider the following two diagrams of the unknot:



Theorem (essentially Bar-Natan, explicit by Turner)

If A is a Frobenius algebra producing a link isotopy invariant via the previous construction, then A is isomorphic to $A_{c,h,t}$ for some $c,h,t \in \mathbb{Q}$ with $c \neq 0$.

About the proof. Consider the following two diagrams of the unknot:



ie dim A = 2.

Theorem (essentially Bar-Natan, explicit by Turner)

If A *is a Frobenius algebra producing a link isotopy invariant via the previous construction, then* A *is isomorphic to* $A_{c,h,t}$ *for some* c *,* h *,* $t \in \mathbb{Q}$ *with* $c \neq 0$.

About the proof (cont). So we must have $A = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot x$ with $x^2 = hx + t \cdot 1$ for some $h, t \in \mathbb{Q}$, ie as an algebra $A = \mathbb{Q}[x]/(x^2 - hx - t)$.

Theorem (essentially Bar-Natan, explicit by Turner)

If A *is a Frobenius algebra producing a link isotopy invariant via the previous construction, then* A *is isomorphic to* $A_{c,h,t}$ *for some* $c,h,t \in \mathbb{Q}$ *with* $c \neq 0$.

About the proof (cont). So we must have $A = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot x$ with $x^2 = hx + t \cdot 1$ for some $h, t \in \mathbb{Q}$, ie as an algebra $A = \mathbb{Q}[x]/(x^2 - hx - t)$.

Claim: $\varepsilon(1) = 0$.

Theorem (essentially Bar-Natan, explicit by Turner)

If A *is a Frobenius algebra producing a link isotopy invariant via the previous construction, then* A *is isomorphic to* $A_{c,h,t}$ *for some* c *,* h *,* $t \in \mathbb{Q}$ *with* $c \neq 0$.

About the proof (cont). So we must have $A = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot x$ with $x^2 = hx + t \cdot 1$ for some $h, t \in \mathbb{Q}$, ie as an algebra $A = \mathbb{Q}[x]/(x^2 - hx - t)$.

Claim: $\varepsilon(1) = 0$. This follows from the fact that the 2-step functor described above must factor through $Add(\mathbb{Z}Cob_2)/S$, T, 4Tu (this defines Bar-Natan's universal geometric theory). S is essentially this condition.

Theorem (essentially Bar-Natan, explicit by Turner)

If A *is a Frobenius algebra producing a link isotopy invariant via the previous construction, then* A *is isomorphic to* $A_{c,h,t}$ *for some* $c,h,t \in \mathbb{Q}$ *with* $c \neq 0$.

About the proof (cont). So we must have $A = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot x$ with $x^2 = hx + t \cdot 1$ for some $h, t \in \mathbb{Q}$, ie as an algebra $A = \mathbb{Q}[x]/(x^2 - hx - t)$.

Claim: $\varepsilon(1) = 0$. This follows from the fact that the 2-step functor described above must factor through $Add(\mathbb{Z}Cob_2)/S$, T, 4Tu (this defines Bar-Natan's universal geometric theory). S is essentially this condition.

Remaining of the proof: A 2-dimensional Frobenius algebra with $\varepsilon(1) = 0$ is isomorphic to a $A_{c,h,t}$ (in fact $c = \varepsilon(x)$). See the handout for details.

Set
$$W := A_{1,0,1}$$
. Explicitly,

$$W = \mathbb{Q}[x]/(x^2 - 1)$$

with

$$\Delta(1) = x \otimes 1 + 1 \otimes x \qquad , \qquad \varepsilon(1) = 0$$

$$\Delta(x) = x \otimes x + 1 \otimes 1 \qquad , \qquad \varepsilon(x) = 1.$$

Set $W := A_{1,0,1}$. Explicitly,

$$W = \mathbb{Q}[x]/(x^2 - 1)$$

with

$$\Delta(1) = x \otimes 1 + 1 \otimes x$$
 , $\varepsilon(1) = 0$

$$\Delta(x) = x \otimes x + 1 \otimes 1$$
 , $\varepsilon(x) = 1$.

The cochain complex obtained from this Frobenius algebra W using the construction above will be denoted $C^*_{L_{PP}}(D)$,

$$C^{i}_{Lee}(D) := \bigoplus_{\substack{\alpha \ |\alpha|=i+n_{-}}} W_{\alpha},$$

with a new differential d_{Lee} , and its cohomology groups

$$Lee^{i}(L) := H^{i}(C_{Lee}^{*}(D))$$

will be called the *Lee homology* groups.

Surprisingly, the Khovanov and Lee homologies are essentially the only link homology theories that one can produce:

Surprisingly, the Khovanov and Lee homologies are essentially the only link homology theories that one can produce:

Theorem (Mackaay, Turner, Vaz 2007)

The (rational) link homology theory produced by the Frobenius algebra $A_{c,h,t}$ is isomorphic to

- 1. Khovanov homology, if $h^2 + 4t = 0$,
- 2. Lee homology, if $h^2 + 4t \neq 0$.

See the handout for a proof.

If $L = \bigcup_i L_i$ ordered, oriented *n*-component link, denote by L^{un} the underlying unoriented link.

 L^{un} admits 2^n possible orientations, and the set of them will be denoted by $Or(L^{un})$.

If $L = \bigcup_i L_i$ ordered, oriented *n*-component link, denote by L^{un} the underlying unoriented link.

 L^{un} admits 2^n possible orientations, and the set of them will be denoted by $Or(L^{un})$. Given $\theta \in Or(L^{un})$, let $E_{\theta} \subset \{1, ..., n\}$ be the subset of components of L whose original orientation must be reversed to get the orientation θ , and write $\overline{E}_{\theta} := \{1, ..., n\} - E_{\theta}$.

If $L = \bigcup_i L_i$ ordered, oriented *n*-component link, denote by L^{un} the underlying unoriented link.

 L^{un} admits 2^n possible orientations, and the set of them will be denoted by $Or(L^{un})$. Given $\theta \in Or(L^{un})$, let $E_{\theta} \subset \{1, \dots, n\}$ be the subset of components of L whose original orientation must be reversed to get the orientation θ , and write $\overline{E}_{\theta} := \{1, \dots, n\} - E_{\theta}$.

Theorem (Lee 2005)

Let $L = \bigcup_i L_i$ be an oriented n-component link in S^3 . There exists a bijection between orientations $\theta \in Or(L^{un})$ and a set of generators \mathfrak{s}_{θ} of the Lee homology of L,

$$Lee^{ullet}(L) \cong \bigoplus_{\theta \in Or(L^{un})} \mathbb{Q} \cdot \mathfrak{s}_{\theta},$$

in particular

$$\dim Lee^{\bullet}(L) = 2^n$$
.

Moreover, the (homological) degree of every generator is given by

$$\deg(\mathfrak{s}_{\theta}) = 2 \sum_{i \in E_{\theta}, \ j \in \overline{E}_{\theta}} \ell k(L_i, L_j).$$

Immediate consequences:

Immediate consequences:

• $Lee^i(L) \cong 0$ if i is odd.

Immediate consequences:

- $Lee^i(L) \cong 0$ if i is odd.
- For any oriented knot *K*, we have

$$Lee^{p}(K) = \begin{cases} \mathbb{Q}^{2}, & p = 0, \\ 0, & \text{else} \end{cases},$$

Immediate consequences:

- $Lee^{i}(L) \cong 0$ if i is odd.
- For any oriented knot *K*, we have

$$Lee^{p}(K) = \begin{cases} \mathbb{Q}^{2}, & p = 0, \\ 0, & \text{else} \end{cases},$$

• For a two-component link $L = L_1 \cup L_2$ we have

$$Lee^{p}(L) = \begin{cases} \mathbb{Q}^{2}, & p = 0, 2 \cdot \ell k(L_{1}, L_{2}), \\ 0, & \text{else} \end{cases}.$$

Theorem (Lee 2005)

$$Lee^{ullet}(L) \cong \bigoplus_{\theta \in Or(L^{un})} \mathbb{Q} \cdot \mathfrak{s}_{\theta}$$
 , $deg(\mathfrak{s}_{\theta}) = 2 \sum_{i \in E_{\theta}, j \in \overline{E}_{\theta}} \ell k(L_i, L_j).$

About the proof. Given orientation $\theta \in \operatorname{Or}(L^{un})$, let α_{θ} denote the *oriented resolution* of a diagram D of L, obtained by resolving every \nearrow or \nearrow with \nearrow (, equipped with the inherited orientation. $\operatorname{res}(\alpha_{\theta}) = \alpha_{\theta}$ is a disjoint union of oriented circles on the plane.

Theorem (Lee 2005)

$$Lee^{ullet}(L) \cong \bigoplus_{\theta \in Or(L^{un})} \mathbb{Q} \cdot \mathfrak{s}_{\theta}$$
 , $deg(\mathfrak{s}_{\theta}) = 2 \sum_{i \in E_{\theta}, j \in \overline{E}_{\theta}} \ell k(L_i, L_j).$

About the proof. Given orientation $\theta \in Or(L^{un})$, let α_{θ} denote the *oriented resolution* of a diagram D of L, obtained by resolving every \nearrow or \nearrow with \nearrow , equipped with the inherited orientation. $res(\alpha_{\theta}) = \alpha_{\theta}$ is a disjoint union of oriented circles on the plane.

Divide $\pi_0(\alpha_\theta) = \pi_0^A(\alpha_\theta) \coprod \pi_0^B(\alpha_\theta)$ into two groups as follows:

- $\gamma \in \pi_0^A(\alpha_\theta)$ if either
 - it has orientation and separated from ∞ by an even # of circles, or
 - it has ⊙ orientation and separated from ∞ by an odd # of circles
- $\gamma \in \pi_0^B(\alpha_\theta)$ otherwise

Lee degeneration

Theorem (Lee 2005)

$$Lee^{\bullet}(L) \cong \bigoplus_{\theta \in Or(L^{un})} \mathbb{Q} \cdot \mathfrak{s}_{\theta}$$
 , $deg(\mathfrak{s}_{\theta}) = 2 \sum_{i \in E_{\theta}, j \in \overline{E}_{\theta}} \ell k(L_i, L_j).$

About the proof. Given orientation $\theta \in Or(L^{un})$, let α_{θ} denote the *oriented resolution* of a diagram D of L, obtained by resolving every \nearrow or \nearrow with \nearrow , equipped with the inherited orientation. $res(\alpha_{\theta}) = \alpha_{\theta}$ is a disjoint union of oriented circles on the plane.

Divide $\pi_0(\alpha_\theta) = \pi_0^A(\alpha_\theta) \coprod \pi_0^B(\alpha_\theta)$ into two groups as follows:

- $\gamma \in \pi_0^A(\alpha_\theta)$ if either
 - it has \circlearrowright orientation and separated from ∞ by an even # of circles, or
 - it has ∅ orientation and separated from ∞ by an odd # of circles
- $\gamma \in \pi_0^B(\alpha_\theta)$ otherwise

Label $\gamma \in \pi_0^A(\alpha_\theta)$ with a := x + 1 and $\gamma \in \pi_0^B(\alpha_\theta)$ with b := x - 1. This defines a chain $s_\theta \in C^{|\alpha_\theta|-n_-}_{Lee}(D)$.

Fact of life. The s_{θ} are cycles, ie $d(s_{\theta}) = 0$, also $\mathfrak{s}_{\theta} := [s_{\theta}] \neq 0$ and they are linearly independent.

Lee degeneration

Theorem (Lee 2005)

$$Lee^{ullet}(L) \cong \bigoplus_{\theta \in Or(L^{un})} \mathbb{Q} \cdot \mathfrak{s}_{\theta}$$
 , $deg(\mathfrak{s}_{\theta}) = 2 \sum_{i \in E_{\theta}, j \in \overline{E}_{\theta}} \ell k(L_i, L_j).$

About the proof. Given orientation $\theta \in \operatorname{Or}(L^{un})$, let α_{θ} denote the *oriented resolution* of a diagram D of L, obtained by resolving every \nearrow or \nearrow with \nearrow , equipped with the inherited orientation. $\operatorname{res}(\alpha_{\theta}) = \alpha_{\theta}$ is a disjoint union of oriented circles on the plane.

Divide $\pi_0(\alpha_\theta) = \pi_0^A(\alpha_\theta) \coprod \pi_0^B(\alpha_\theta)$ into two groups as follows:

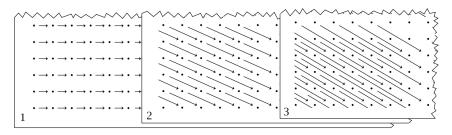
- $\gamma \in \pi_0^A(\alpha_\theta)$ if either
 - it has orientation and separated from ∞ by an even # of circles, or
 - it has ∅ orientation and separated from ∞ by an odd # of circles
- $\gamma \in \pi_0^B(\alpha_\theta)$ otherwise

Label $\gamma \in \pi_0^A(\alpha_\theta)$ with a := x + 1 and $\gamma \in \pi_0^B(\alpha_\theta)$ with b := x - 1. This defines a chain $s_\theta \in C^{|\alpha_\theta|-n}_{Lee}(D)$.

Fact of life. The s_{θ} are cycles, ie $d(s_{\theta}) = 0$, also $\mathfrak{s}_{\theta} := [s_{\theta}] \neq 0$ and they are linearly independent.

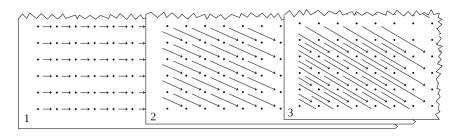
Hence so dim $Lee^{\bullet}(L) \ge 2^n$. For \le one uses the long exact sequence of Lee homology. Degree formula: easy computation.

Quick reminder of spectral sequences



A spectral sequence is a collection of pairs $(E_r, d_r), r \ge 1$ where $E_r = \bigoplus_{p,q} E_r^{p,q}$ bigraded vector space, $d_r : E_r \longrightarrow E_r$ differential $(d_r^2 = 0)$ of bidegree (r, 1 - r) and $E_{r+1} = H(E_r, d_r)$. If the E_r are bounded from below & the left, each bullet will reach a stable value $E_\infty^{p,q}$.

Quick reminder of spectral sequences



A spectral sequence is a collection of pairs (E_r, d_r) , $r \ge 1$ where $E_r = \bigoplus_{p,q} E_r^{p,q}$ bigraded vector space, $d_r : E_r \longrightarrow E_r$ differential $(d_r^2 = 0)$ of bidegree (r, 1 - r) and $E_{r+1} = H(E_r, d_r)$. If the E_r are bounded from below & the left, each bullet will reach a stable value $E_\infty^{p,q}$.

If $N^{\bullet} = N^n$ is a graded vector space with each of the N^n equipped with a filtration F^*N^n , to say that the spectral sequence converges to N^{\bullet} is to specify isomorphisms

$$E_{\infty}^{i,n-i} \stackrel{\cong}{\longrightarrow} \operatorname{gr}^{i} N^{n} \qquad (:= F^{i} N^{r} / F^{i-1} N^{n})$$

and we simply write $E_1^{p,q} \Rightarrow N^{p+q}$. Over $\mathbb Q$, this implies that $N^n \cong \bigoplus E_\infty^{p,q}$.

The spectral sequences of a filtered complex

Suppose C^* is a cochain complex with (descending) filtration

$$\cdots \subseteq F^n C^* \subseteq F^{n-1} C^* \subseteq F^{n-2} C^* \subseteq \cdots F^u C^* = C^*$$

(typically u = 0 but not necessarily here). Its associated graded complex consists of the cochain complexes $gr^nC^* := F^nC^*/F^{n+1}C^*$.

For every n, the filtration on C^* induces a filtration on $H^n(C^*)$, namely $F^iH^n(C^*):=\operatorname{Im}(H^n(F^iC^*)\longrightarrow H^n(C^*))$. In particular we also have the associated graded $\operatorname{gr}^iH^n(C^*):=F^iH^n(C^*)/F^{i+1}H^n(C^*)$, and we can talk of the *filtration degree* of a given element in $H^n(C^*)$.

The spectral sequences of a filtered complex

Suppose C^* is a cochain complex with (descending) filtration

$$\cdots \subseteq F^n C^* \subseteq F^{n-1} C^* \subseteq F^{n-2} C^* \subseteq \cdots F^u C^* = C^*$$

(typically u = 0 but not necessarily here). Its associated graded complex consists of the cochain complexes $gr^nC^* := F^nC^*/F^{n+1}C^*$.

For every n, the filtration on C^* induces a filtration on $H^n(C^*)$, namely $F^iH^n(C^*):=\operatorname{Im}(H^n(F^iC^*)\longrightarrow H^n(C^*))$. In particular we also have the associated graded $\operatorname{gr}^iH^n(C^*):=F^iH^n(C^*)/F^{i+1}H^n(C^*)$, and we can talk of the *filtration degree* of a given element in $H^n(C^*)$.

Theorem (Leray 40s)

Let C^* be a filtered cochain complex, and suppose that for every k, the filtration $\{F^iC^k\}_i$ of C^k has finite length. Then there is a spectral sequence

$$E_1^{p,q} = H^{p+q}(\operatorname{gr}^p C^*) \Rightarrow H^{p+q}(C^*)$$

convering to the cohomology of C^* .

Explicitly, convergence means that

$$H^n(C^*) \cong \bigoplus_{p+q=n} E_{\infty}^{p,q}.$$

As \mathbb{Q} -vector spaces,

$$W = V = \mathbb{Q}1 \oplus \mathbb{Q}x$$
, $\deg(1) = 1$, $\deg(x) = -1$.

We denote as $C_{Lee}^{i,j}$ the q-degree j part. In fact, as vector spaces, $C_{Lee}^{i,j} = C_{Kh}^{i,j} = C_{Kh}^{i,j}$

As \mathbb{Q} -vector spaces,

$$W = V = \mathbb{Q}1 \oplus \mathbb{Q}x$$
, $\deg(1) = 1$, $\deg(x) = -1$.

We denote as $C_{Lee}^{i,j}$ the q-degree j part. In fact, as vector spaces, $C_{Lee}^{i,j} = C_{Kh}^{i,j} =: C_{Kh}^{i,j$

Key observation. As a linear map, the Lee differential d_{Lee} restricts to

$$d_{Lee}^i = d_{Kh}^i + \Phi: C^{i,j} \longrightarrow C^{i+1,j} \oplus C^{i+1,j+4}$$

As \mathbb{Q} -vector spaces,

$$W = V = \mathbb{Q}1 \oplus \mathbb{Q}x$$
, $\deg(1) = 1$, $\deg(x) = -1$.

We denote as $C_{Lee}^{i,j}$ the q-degree j part. In fact, as vector spaces, $C_{Lee}^{i,j} = C_{Kh}^{i,j} =: C_{Kh}^{i,j$

Key observation. As a linear map, the Lee differential d_{Lee} restricts to

$$d_{Lee}^i = d_{Kh}^i + \Phi : C^{i,j} \longrightarrow C^{i+1,j} \oplus C^{i+1,j+4}$$

This is roughly because

$$\Delta_{\textit{Lee}}(x) = \underbrace{x \otimes x}_{\Delta_{\textit{Kh}}(x)} + \underbrace{1 \otimes 1}_{\Phi(x)} \qquad , \qquad \mu_{\textit{Lee}}(x \otimes x) = \underbrace{0}_{\mu_{\textit{Kh}}(x \otimes x)} + \underbrace{1}_{\Phi(x \otimes x)}$$

As \mathbb{Q} -vector spaces,

$$W = V = \mathbb{Q}1 \oplus \mathbb{Q}x$$
, $\deg(1) = 1$, $\deg(x) = -1$.

We denote as $C_{Lee}^{i,j}$ the q-degree j part. In fact, as vector spaces, $C_{Lee}^{i,j} = C_{Kh}^{i,j} = C_{Kh}^{i,j}$

Key observation. As a linear map, the Lee differential d_{Lee} restricts to

$$d_{Lee}^i = d_{Kh}^i + \Phi : C^{i,j} \longrightarrow C^{i+1,j} \oplus C^{i+1,j+4}$$

This is roughly because

$$\Delta_{Lee}(x) = \underbrace{x \otimes x}_{\Delta_{Kh}(x)} + \underbrace{1 \otimes 1}_{\Phi(x)} \qquad , \qquad \mu_{Lee}(x \otimes x) = \underbrace{0}_{\mu_{Kh}(x \otimes x)} + \underbrace{1}_{\Phi(x \otimes x)}$$

Upshot. $F^nC^*_{Lee} := \bigoplus_{j \geq n} C^{*,j}_{Lee}$ turns C^*_{Lee} into a filtered complex. Now the associated graded is given by

$$\operatorname{gr}^n C^* = F^n C^* / F^{n+1} C^* = C^{*,n}$$

with differential the q-degree-preserving part of d_{Lee} , that is d_{Kh} . Therefore, the cohomology groups of $\operatorname{gr}^n C^*$ are exactly the Khovanov homology groups. Boom!

Theorem (Lee spectral sequence)

For any link L, there is a spectral sequence with E_1 -page given by Khovanov homology which converges to Lee homology,

$$E_1^{p,q} = Kh^{p+q,p}(L) \Rightarrow Lee^{p+q}(L).$$

Furthermore, this spectral sequence has differential $d_r = 0$ in the E_r -page unless $r \in 4\mathbb{Z}$.

Theorem (Lee spectral sequence)

For any link L, there is a spectral sequence with E_1 -page given by Khovanov homology which converges to Lee homology,

$$E_1^{p,q} = Kh^{p+q,p}(L) \Rightarrow Lee^{p+q}(L).$$

Furthermore, this spectral sequence has differential $d_r = 0$ in the E_r -page unless $r \in 4\mathbb{Z}$.

But... why should we care about this?

Using isotopy invariance + value of the unknot + behaviour under II + long exact sequence we can compute for the right-handed trefoil $T_{2,3}$

$$\mathit{Kh}^{i,j}(T_{2,3}) = \begin{cases} \mathbb{Q}, & (i,j) = (0,1), (0,3), (2,5), (3,9), \\ 0, & (i,j) = \text{elsewhere except } (2,7), (3,7), \\ \boxed{?}, & (i,j) = (2,7), (3,7) \end{cases}$$

Using isotopy invariance + value of the unknot + behaviour under II + long exact sequence we can compute for the right-handed trefoil $T_{2,3}$

$$\mathit{Kh}^{i,j}(T_{2,3}) = \begin{cases} \mathbb{Q}, & (i,j) = (0,1), (0,3), (2,5), (3,9), \\ 0, & (i,j) = \text{elsewhere except } (2,7), (3,7), \\ \boxed{?}, & (i,j) = (2,7), (3,7) \end{cases}$$

? comes from the long exact sequence:

$$0 \longrightarrow Kh^{2,7}(T_{2,3}) \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q} \longrightarrow Kh^{3,7}(T_{2,3}) \longrightarrow 0,$$

Using isotopy invariance + value of the unknot + behaviour under II + long exact sequence we can compute for the right-handed trefoil $T_{2,3}$

$$\mathit{Kh}^{i,j}(T_{2,3}) = \begin{cases} \mathbb{Q}, & (i,j) = (0,1), (0,3), (2,5), (3,9), \\ 0, & (i,j) = \mathrm{elsewhere} \ \mathrm{except} \ (2,7), (3,7), \\ \boxed{?}, & (i,j) = (2,7), (3,7) \end{cases}$$

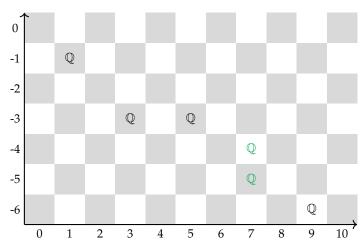
? comes from the long exact sequence:

$$0 \longrightarrow Kh^{2,7}(T_{2,3}) \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q} \longrightarrow Kh^{3,7}(T_{2,3}) \longrightarrow 0,$$

Either

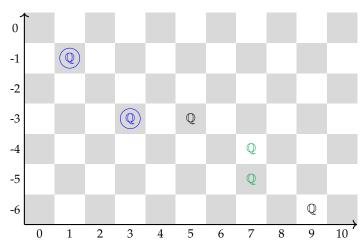
- \longrightarrow is the zero map and ? $\cong \mathbb{Q}$
- \longrightarrow is an isomorphism and $(?) \cong 0$

If ? $\cong \mathbb{Q}$,



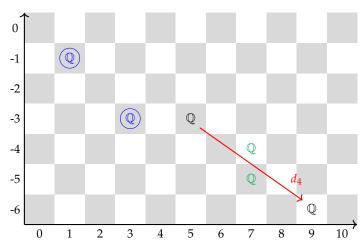
(recall $E_1^{p,q} = Kh^{p+q,p}$).

If ? $\cong \mathbb{Q}$,



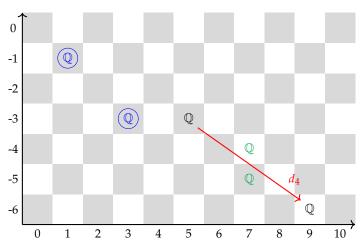
(recall $E_1^{p,q} = Kh^{p+q,p}$).

If
$$(?) \cong \mathbb{Q}$$
,



(recall
$$E_1^{p,q} = Kh^{p+q,p}$$
).

If
$$(?) \cong \mathbb{Q}$$
,



(recall $E_1^{p,q} = Kh^{p+q,p}$). Hence ? \cong 0, and $s(T_{2,3}) = 2$.