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These are notes prepared for a talk in the Matemale school on Khovanov homology and exotic phenom-
ena, held on 19–23 May 2025. I will explain Lee’s “degenerate” version of Khovanov homology1, which
was first introduced in [Lee05]. Unlike the usual Khovanov homology groups Khi,j(L), which are bi-
graded, the Lee homology groups Leei(L) will be single-graded. It will turn out that Lee homology is a
terrible link invariant: for any knot K we will have

Leei(K) =

{
Q2, i = 0
0, else

(so it is as bad as the homology groups of the knot complement, it does not distinguish any pair of knots
at all!), and for a link L = ∪iLi the groups Leei(L) will be fully determined by the linking matrix of L.
But keep your hopes up: by the end of the talk I will try to convince you why the h*ck this might be
useful. Sneak peek (probably already mentioned by Sardor):

1. There is a spectral sequence with E1-page the Khovanov homology groups converging to Lee
homology. Good news: in almost cases known, this sequence collapses at the first page where
there are non-trivial differentials2.

2. In the Lee spectral sequence of a knot K, there is an even integer s(K) such that the two surviving
generators have filtration degrees s(K) ± 1. This is the celebrated Rasmussen s-invariant. Alexis
will tell us that this gives rise to a group homomorphism

s : Csm −→ 2Z

from the smooth knot concordance group to the even integers, and also that magically this value
(produced combinatorially) gives a lower bound for the smooth slice genus of a knot,

|s(K)| ≤ 2gsm
4 (K).

Later on Edwin will make use of this inequality to produce exotic structures on R4 from knots that
are topologically slice (e.g. when ∆K = 1) but not smoothly slice (e.g. when s(K) ̸= 0).

Acknowledgements. I would like to thank Edwin Kitaeff for helpful discussions about the content of
these notes.

1 The two-step Khovanov construction

Bar-Natan’s influential construction of Khovanov complex of a link diagram D can be split into a two-
step functor

P(cr(D)) −→ Cob2
TQFT−→ grVectQ (1)

that we will now explain.
First recall that if S is a set, its Boolean lattice is the poset P(S) of subsets of S ordered by inclusion,

e.g. if S = {a, b, c} then

1This should have been called Khovanov cohomology
2In fact it was believed for some time that this was always the case; the first counterexample was found by Manolescu and

Marengon in 2018 [MM20]. They also disproved the so-called Garoufalidis–Khovanov–Bar-Natan’s Knight move conjecture.
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{a} {a, b}

∅ {b} {a, c} {a, b, c}

{c} {b, c}

If S is additionally ordered, there is a preferred poset isomorphism

P(S)
∼=−→ {0, 1}#S

so that any subset of S gets identified with the sequence of 0’s and 1’s of length #S that has 1 (resp. 0) in
the i-th position if the i-th element of P(S) is (resp. is not) contained in the subset. So if S = {a ≤ b ≤ c}
the previous diagram is rewritten as

100 110

000 010 101 111

001 011

Also, any poset (P,≤) can be viewed as a category with objects the elements of P and a unique arrow
x −→ y if x ≤ y.

Now, if D is an (oriented) link diagram, let us write cr(D) for the set of its crossings, and choose an
arbitrary order on it. Replacing every crossing by its 0-resolution or its 1-resolution according
to each of the patterns gives rise to a functor

P(cr(D)) −→ Cob2, (2)

using the saddle cobordism between two resolutions that differ in the same position.
The second step is to apply a (rational) 2d TQFT. It is well-known that there is an equivalence of

groupoids
2d TQFTs ≃−→ comFrobQ

between 2d TQFTs and (co)commutative3 Frobenius algebras (if you want a less fancy language, a bijec-
tion between isomorphism classes of the two). In the previous talks we have taken a very particular
TQFT: the one corresponding to the Frobenius algebra V := Q[x]/(x2) with coalgebra structure de-
termined by4

∆(1) = x ⊗ 1 + 1 ⊗ x , ε(1) = 0
∆(x) = x ⊗ x , ε(x) = 1.

Additionally, we considered V = Q1 ⊕Qx as a graded vector space with deg(1) = 1 and deg(x) =
−1 (warning: this is NOT a graded algebra), we will call this the p-degree. Then the image of the
combinatorial diagram of 0’s and 1’s under (1) is a diagram of graded vector spaces.

For an (oriented) link diagram D, we write n for the number of crossings and n+ (resp. n−) for the
number of positive (resp. negative) crossings. For each of the resolutions α ∈ {0, 1}n, we write |α| for
the number of 1’s and kα for the number of circle components in the 1-manifold resulting from applying
(2) to α. If for every α ∈ {0, 1}n we set

Vα := V⊗kα{|α|+ n+ − 2n−},

3A Frobenius algebra is commutative if and only if it is cocommutative [Koc04, 2.3.29].
4For the algebraic topology-minded reader: if M is a oriented closed manifold, then H•(M,Q) is a Frobinius algebra; and this

one is precisely H•(CP1,Q).
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(curly brackets denote a shift in the p-degree), then the Khovanov cochain complex is given by

Ci
Kh(D) :=

⊕
α

|α|=i+n−

Vα (3)

(this is a cochain complex of graded vector spaces), with differentials di
Kh : Ci

Kh(D) −→ Ci+1
Kh (D) given

by an alternated sum of linear maps combination of multiplications and comultiplications. The unnor-
malised Jones polynomial can be then recovered taking its graded Eurler characteristic,

χq(C∗
Kh(D)) = Ĵ(D).

We have not wasted our time: we get a genuine link invariant.

Theorem 1.1 (proven by Victor). If D, D′ are two link diagrams that differ by one of the Reidemeister moves,
then C∗

Kh(D) and C∗
Kh(D′) are chain homotopy equivalent.

In particular, the chain homotopy type of C∗
Kh(D) is a link isotopy invariant.

For a link L with a diagram D we will write Khi(L) := Hi(C∗
Kh(D)), its i-th Khovanov homology group.

In fact Khovanov homology is finer than the Jones polynomial: there are pairs of knots with the same
Jones polynomial but with different Khovanov homology groups.

If Ci,j
Kh denotes the degree j part of Ci

Kh, then i is called the homological degree and j the q-degree.

Remark 1.2. If v ∈ Ci,j
Kh is an homogeneous element, then{

i = |α| − n−
j = p(v) + i + n+ − n−

(here p(v) denotes the p-degree in V⊗kα ).

It turns out that the differential preserves the q-degree, q(dKh(v)) = q(v) for a homogeneous element
v, that is

di
Kh : Ci,j

Kh −→ Ci+1,j
Kh . (4)

This is a consequence of the multiplication and comultiplication map satisfying this property. Therefore,
the q-degree descends to the cohomology Khi(D) = Hi(C∗

Kh(D)) of the cochain complex C∗
Kh(D), and

the q-degree j part is denoted by Khi,j(D), that is Khi(D) = ⊕jKhi,j(D). Alternatively, Khi,j(D) =

Hi(C∗,j
Kh(D)).

A powerful computational tool of Khovanov homology is the existence of long exact sequences:
given a link diagram D, let be one of its positive crossings. Then its 0-resolution inherits a canon-
ical orientation. Its 1-resolution does not, so choose an arbitrary orientation for it. If

c := n−( )− n−( ),

there is a canonical split short exact sequence of cochain complexes

0 −→ C∗−c−1,j−3c−2
Kh ( ) −→ C∗,j

Kh( ) −→ C∗,j−1
Kh ( ) −→ 0 (5)

which induces induces a long exact sequence

· · · Khi−c−1,j−3c−2( ) Khi,j( ) Khi,j−1( )

Khi−c,j−3c−2( ) Khi+1,j( ) · · ·

There is a similar one when the crossing is negative, see e.g. [Tur17] for details.
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2 Changing the TQFT

For the usual construction recalled in the previous section, we have taken a very particular Frobenius
algebra (=2d TQFT) that indeed gave rise to a link invariant via this construction. There is however a
natural question to ask here:

Question 2.1. For what other Frobenius algebras does this construction produce a link isotopy invariant?

For c, h, t ∈ Q with c ̸= 0, let
Ac,h,t := Q[x]/(x2 − hx − t) (6)

(this is 2-dimensional as a vector space) with bialgebra structure given by

∆(1) = 1
c (x ⊗ 1 + 1 ⊗ x − h(1 ⊗ 1)) , ε(1) = 0

∆(x) = 1
c (x ⊗ x + t(1 ⊗ 1)) , ε(x) = c.

It is routine to check that this indeed defines the structure of a Frobenius algebra on Ac,h,t.
I roughly learned the following theorem from Turner [Tur17, §4], but this appears somewhat implicit

in Bar-Natan’s geometric approach to Khovanov homology [BN05].

Theorem 2.2. If A is a Frobenius algebra producing a link isotopy invariant via the previous construction, then
A is isomorphic to Ac,h,t for some c, h, t ∈ Q with c ̸= 0.

Note that A1,0,0 is precisely the Frobenius algebra V used in the previous section.

Proof. Let us start showing that dim A = 2. Consider the following two diagrams of the unknot:

These two diagrams produce the following cochain complexes:

0 −→ A −→ 0 , 0 −→ A −→ A ⊗ A −→ 0.

In the first complex, the copy of A sits in homological degree 0 whereas in the second sits in homological
degree −1 (because the crossing is negative). By hypothesis, these two cochain complexes must be chain
homotopy equivalent; in particular they must have the same Euler characteristic:

dim A = −dim A + (dim A)2,

ie dim A = 2 (it cannot be dim A = 0 as A must be an algebra, ie there must be a unit).
Since 1 must be one of the generators of A, let us call the other x, so A = Q1 ⊕Qx as a vector space.

For the multiplicative structure, we must have 1 · 1 = 1 and x · 1 = x = 1 · x as 1 is the unit; and besides
x2 = hx + t1 for some h, t ∈ Q by dimension reasons. Ie as an algebra, A = Q[x]/(x2 − hx − t).

Next let us see that ε(1) = 0. The need to impose this equality becomes apparent when examining
the Reidemeister 2 moves, but it is best explained by Bar-Natan’s (universal) geometric theory. Essen-
tially, if one consider the additive closure Add(ZCob2), and one mods out the “local relations” S, T, 4Tu,
then one can defer the application of a TQFT and still get a chain complex whose chain homotopy type
is a link invariant5. The S relation states that any time a cobordism contains a copy of a sphere (formed
by gluing two hemispheres), the entire cobordism is zero. This corresponds exactly to the equation
ε(1) = ε ◦ η = 0.

The rest of the proof is a standard computation that we include for completeness. Let c := ε(x).
Since A is cocommutative, we can write its action on the basis elements as

∆(1) = λ1(1 ⊗ 1) + λ2(1 ⊗ x + x ⊗ 1) + λ3(x ⊗ x)
∆(x) = µ1(1 ⊗ 1) + µ2(1 ⊗ x + x ⊗ 1) + µ3(x ⊗ x)

5This is [BN05, Theorem 1] stating that the isomorphism class of given object in the onomatopoeia category
Kom/h(Mat(Cob3

/l)) is an invariant of the tangle.
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for some coefficients λi, µi ∈ Q. The counit axiom (ε ⊗ id)(∆(1)) = 1 implies that λ2 = 1/c and λ3 = 0;
whereas from (ε ⊗ id)(∆(x)) = x we get µ2 = 0 and µ3 = 1/c.

On the other hand, the Frobenius condition ∆ ◦ m = (id ⊗ m) ◦ (∆ ⊗ id) applied to 1 ⊗ x yields
λ1 = −h/c and µ1 = t/c, as promised.

Apart from A1,0,0 = V, there is another Frobenius algebra we would like to hightlight, and that is
A1,0,1 =: W. Explicitly,

W = Q[x]/(x2 − 1) (7)

with

∆(1) = x ⊗ 1 + 1 ⊗ x , ε(1) = 0
∆(x) = x ⊗ x + 1 ⊗ 1 , ε(x) = 1.

The cochain complex obtained from this Frobenius algebra W using the construction above will be
denoted C∗

Lee(D),
Ci

Lee(D) :=
⊕

α
|α|=i+n−

Wα, (8)

with a new differential dLee, and its cohomology groups Leei(L) := Hi(C∗
Lee(D)) will be called the Lee

homology groups.
Surprisingly, the Khovanov and Lee homologies are essentially the only link homology theories that

one can produce:

Proposition 2.3 ([MTV07]). The (rational) link homology theory produced by the Frobenius algebra Ac,h,t is
isomorphic to

1. Khovanov homology, if h2 + 4t = 0,

2. Lee homology, if h2 + 4t ̸= 0.

Proof. We first claim that the homology theories produced by the Frobenius algebras Ac,h,t and A1,h,t are
isomorphic for all c ̸= 0. To see this, note that these two Frobenius algebras have the same multiplicative
structure and the coalgebra maps (∆c, εc) and (∆1, ε1) of Ac,h,t and A1,h,t respectively are related by

∆c =
1
c ∆1 , εc = cε1.

Now for any link diagram D with n crossings the corresponding n-cubes (the images of P(cr(D)) un-
der (1)) are isomorphic, as the edges only differ by some scalar multiplication. Therefore the cochain
complexes will also be isomorphic. This concludes the claim.

We can therefore focus on Ah,t := A1,h,t. Let us look at the discriminant h2 + 4t of x2 − hx − t. If
h2 + 4t = 0, then x2 − hx − t = (x − h/2)2 and obviously there is a Frobenius algebra isomorphism

A0,0 −→ Ah,t , x 7→ x − h/2.

Now assume h2 + 4t ̸= 0, and let λ := 2/
√

h2 + 4t ∈ Q. Let A′
h,t = Ah,t ⊗ Q as an algebra with

coalgebra structure
∆′ = λ∆ , ε′ = λ−1ε.

By the argument above, A′
h,t and Ah,t ⊗ Q produce isomorphic homology theories. Now by direct

computation one can check that

W ⊗Q = A0,1 ⊗Q −→ A′
h,t , x 7→ λ(x − h/2)

is an isomorphism of Frobenius algebras. We conclude that the homology theories induced by W ⊗Q
and by Ah,t ⊗Q are isomorphic, and so are the ones induced by W and Ah,t as desired.

We have then obtained the answer to Question 2.1: over the rationals a homology theory constructed
as in Section 1 is isomorphic to either Khovanov homology or Lee homology.
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3 Lee degeneration, aka “this seems hopeless...”

The goal of this section is to prove that Lee homology is a terrible link invariant, being fully determined
by the linking numbers between their components.

Before stating the theorem we need to introduce some notation. If L = ∪iLi is an ordered, ori-
ented n-component link in S3, let us denote by Lun the underlying unoriented link. Any unoriented
n-component link admits 2n possible orientations, and the set of them will be denoted by Or(Lun).

Given an orientation θ ∈ Or(Lun), let Eθ ⊂ {1, . . . , n} be the subset of indices of the components of
L whose original orientation must be reversed to get the orientation θ, and write Eθ := {1, . . . , n} − Eθ .

Theorem 3.1 ([Lee05]). Let L = ∪iLi be an oriented n-component link in S3. There exists a bijection between
orientations θ ∈ Or(Lun) and a set of generators sθ of the Lee homology of L,

Lee•(L) ∼=
⊕

θ∈Or(Lun)

Q · sθ ,

in particular
dim Lee•(L) = 2n.

Moreover, the (homological) degree of every generator is given by

deg(sθ) = 2 ∑
i∈Eθ , j∈Eθ

ℓk(Li, Lj).

Note that in particular Leei(L) ∼= 0 whenever i is odd. It is worth noting some special cases. For any
oriented knot K, we have

Leep(K) =

{
Q2, p = 0,
0, else

,

and for a two-component link L = L1 ∪ L2 we have

Leep(L) =

{
Q2, p = 0, 2 · ℓk(L1, L2),
0, else

.

In general, according to the theorem, we have that

dim Leep(L) = #{θ ∈ Or(Lun) : p = 2 ∑
i∈Eθ , j∈Eθ

ℓk(Li, Lj)}.

Proof of Theorem 3.1. Let us first define the classes sθ for a given orientation θ ∈ Or(Lun). Let αθ denote
the oriented resolution of a diagram D of L, which is obtained by resolving every positive or negative
crossing with , equipped with the inherited orientation. After applying (2), we have that res(αθ) =
αθ is a disjoint union of oriented circles on the plane. We are going to divide π0(αθ) into two groups: a
circle belongs to Group A (resp. Group B) if it has the counter-clockwise orientation and is separated
from infinity by an even (resp. odd) number of circles or if it has the clockwise orientation and is
separated from infinity by an odd (resp. even) number of circles. Labelling the components of Group
A with a := x + 1 ∈ W and the components of Group B with b := x − 1 ∈ W defines a chain sθ ∈
C|αθ |−n−

Lee (D). Note:
a · b = (x + 1)(x − 1) = x2 − 1 = 0

and similarly
b · a = 0 , a · a = 2a , b · b = 2b,

and
∆(a) = a ⊗ a , ∆(b) = b ⊗ b.

It is not hard to see that if two circles share a crossing, then they have different labels, cf. [Ras10,
Corollary 2.5]. From this and the above relations it follows that this element is a cycle, dLee(sθ) = 0.
We define sθ := [sθ ] to be the corresponding Lee homology class. In fact, these classes are non-zero (i.e.
they are not boundaries) and they are linearly independent (we will not show these properties here), so
dim Lee•(L) ≥ 2n. The proof will now consist of showing that the converse inequality also holds.
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The first observation is that given a (say positive) crossing in a given link diagram, just as (5) we
have a short exact sequence

0 −→ C∗−c−1
Lee ( ) −→ C∗

Lee( ) −→ C∗
Lee( ) −→ 0

which induces a long exact sequence

· · · −→ Leei−1( ) −→ Leei−c−1( ) −→ Leei( ) −→ Leei( ) −→ Leei−c( ) −→ · · · .

By exactness,
dim Lee•( ) ≤ dim Lee•( ) + dim Lee•( ).

Let us now prove that Lee•(L) = 2n for any link L. We consider a diagram D of L of minimal number
c of crossings (that is, c is the crossing number of L), and we argue using induction on c. It is clear that
it holds for the unknot, dim Lee•(U) = 2, and this is the base case.

We have to distinguish several cases depending on the number of components n of L:

• if n = 1, pick a (say, positive) crossing . Now, each of the two resolution and of such
a crossing has c − 1 crossings. Also, one of them, say , is a knot and the other is a two-
component link. Now we claim that the connecting δ : Leei( ) −→ Leei−c( ) is injective. To
see this, first note that out of the four possible orientations of the two-component link , two
are compatible with the two possible orientations of D whereas other two are compatible with
the two possible orientations of the knot . Then, in the long exact sequence, the two generators
of Leei( ) map to the two generators of Leei( ) coming from the two orientations compatible
with those of , which yields the claim. Hence by a linear algebra argument and by the induction
hypothesis

dim Lee•( ) ≤ dim Lee•( ) + dim Lee•( )− 4 = 2 + 4 − 4 = 2.

• Now say that n = 2. If D = D1 ⨿ D2 is a disjoint union of two knot diagrams (each of them with
crossing number lower than c), then

Lee•(D) = Lee•(D1) · Lee•(D2) = 2 · 2 = 4

and we are done. If D cannot be expressed as the disjoint union of two knot diagrams, then there
must be at least a crossing (say positive) between the two components. The two resolutions
and must be knot diagrams, each of them with fewer crossings than c, so

4 ≤ dim Lee•( ) ≤ dim Lee•( ) + dim Lee•( ) = 2 + 2 = 4.

The case for general n is mimicked from the former.
Lastly, let us prove the degree formula for each of the generators sθ , this is now easy. Recall that

by definition deg(sθ) = |αθ | − n−, and |αθ | is the number of 1-resolutions performed in the oriented
resolution αθ of a diagram D of the link equipped with the orientation θ. Now, negative (resp. positive)
crossings are turned into 1- (resp. 0-)resolutions; hence |αθ | = nθ

− the number of negative crossings of
D with the orientation θ.

Let us write D = ∪Di for a oriented diagram of L and Dθ = ∪Dθ
i for the corresponding diagram of

D with the orientation θ. Then

deg(sθ) = nθ
− − n−

= #
(

negative crossings
in Dθ

)
− #

(
negative crossings

in D

)
= ∑

i,j∈Eθ

(
#
(

neg cross betw
Dθ

i and Dθ
j

)
− #

(
neg cross betw

Di and Dj

))
+ ∑

i,j∈Eθ

(
#
(

neg cross betw
Dθ

i and Dθ
j

)
− #

(
neg cross betw

Di and Dj

))

+ ∑
i∈Eθ ,j∈Eθ ,

(
#
(

neg cross betw
Dθ

i and Dθ
j

)
− #

(
neg cross betw

Di and Dj

))
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= ∑
i∈Eθ ,j∈Eθ ,

#
(

neg cross betw
−Di and Dj

)
− #

(
neg cross betw

Di and Dj

)

= ∑
i∈Eθ ,j∈Eθ ,

#
(

pos cross betw
Di and Dj

)
− #

(
neg cross betw

Di and Dj

)
= ∑

i∈Eθ ,j∈Eθ ,

2 · ℓk(Di, Dj)

which concludes.

Each of the generators sθ constructed in the proof of the previous theorem are called Lee’s canonical
generators. The name is justified by the following theorem, that we state without proof for reference in
a forthcoming talk:

Theorem 3.2 ([Ras10]). Let (Σ, L0, L1) be a cobordism presented by a movie (M, D0, D1), and suppose that
every component of Σ has a boundary component in L0. If θ0 and θ1 denote the orientations in D0 and D1
induced by the orientation of Σ, then the induced map

ϕM : Lee•(D0) −→ Lee•(D1)

satisfies that ϕM(sθ0) = λ · sθ1 for some 0 ̸= λ ∈ Q.

4 The Lee spectral sequence, aka “...but it is not!”

Let us pick up the fruits from Sardor’s talk and describe the so-called Lee spectral sequence6.
Here is a friendly reminder about the spectral sequence we will make use of. If C∗ is a cochain

complex, a (descending) filtration on C∗ is a sequence of subcomplexes

· · · ⊆ FnC∗ ⊆ Fn−1C∗ ⊆ Fn−2C∗ ⊆ · · · FuC∗ = C∗

(typically u = 0 but not necessarily here). Its associated graded complex consists of the cochain complexes

grnC∗ := FnC∗/Fn+1C∗,

whose differential is inherited from that of C∗. Note that for every m, the filtration on C∗ induces a
filtration on the vector space Hn(C∗), namely

Fi Hn(C∗) := Im(Hn(FiC∗) −→ Hn(C∗)).

In particular we also have the associated graded gri Hn(C∗) := Fi Hn(C∗)/Fi+1Hn(C∗), and we can talk
of the filtration degree of a given element in Hn(C∗).

Filtered complexes give rise to a spectral sequence:

Theorem 4.1 (proven by Sardor). Let C∗ be a filtered cochain complex, and suppose that for every k, the
filtration {FiCk}i of Ck has finite length. Then there is a spectral sequence

Ep,q
1 = Hp+q(grpC∗) ⇒ Hp+q(C∗)

convering to the cohomology of C∗.

We use the standard bigrading stating that dr : Ep,q
r −→ Ep+r,q−r+1

r . Recall also that convergence
means that we have preferred isomorphisms

Ei,n−i
∞

∼=−→ gri Hn(C∗),

and working over the field Q this implies that

Hn(C∗) ∼=
⊕

p+q=n
Ep,q

∞ .

6Aka the Lee-Rasmussen spectral sequence, the Khovanov-to-Lee spectral sequence, or perhaps the Lee-Miller-Thurston spec-
tral sequence, since Lee did not mention at all spectral sequences in the first version of [Lee05], and in a subsequent version she
acknowledges that Miller and Thurston pointed out that her computations are really part of a spectral sequence.
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Let us see how to apply this to obtain the advertised Lee spectral sequence. Note that, as rational
vector spaces,

W = V = Q1 ⊕Qx,

and we had set deg(1) = 1 and deg(x) = −1. We denote as Ci,j
Lee the q-degree j part. In fact, as vector

spaces, Ci,j
Lee = Ci,j

Kh, so I will denote it simply by Ci,j.

Key observation 4.2. As a linear map, the Lee differential dLee restricts to

di
Lee = dKh + Φ : Ci,j −→ Ci+1,j ⊕ Ci+1,j+4 (9)

(compare with (4)), in particular q(dLee(v)) ≥ q(v). That there is such a splitting of dLee is obvious by the
definitions of the multiplication and comultiplications of V and W as Frobenius algebras; and the part
about the degrees follows by inspecting the multiplication and comultiplication maps of the Frobenius
algebra W that induce the Lee differential.

Fact of life: Φ is actually a cochain map, squares to zero and anticommutes with dKh.

This means that setting
FnC∗

Lee :=
⊕
j≥n

C∗,j
Lee

turns C∗
Lee into a filtered complex, with differential induced by dLee. Now the associated graded is given

by
grnC∗ = FnC∗/Fn+1C∗ = C∗,n

with differential the q-degree-preserving part of dLee, that is dKh. Therefore, the cohomology groups of
grnC∗ are exactly the Khovanov homology groups. Boom!

It is clear that, for every k, the filtration {FiCk}i is finite as we consider at all times finite tensor
copies of W in the construction of the Khovanov complex.

The consequence of Theorem 4.1 is now:

Theorem 4.3 (Lee spectral sequence). For any link L, there is a spectral sequence with E1-page given by
Khovanov homology which converges to Lee homology,

Ep,q
1 = Khp+q,p(L) ⇒ Leep+q(L).

Furthermore, this spectral sequence has differential dr = 0 in the Er-page unless r ∈ 4Z.

Proof. Only the last claim needs explanation. In the construction of the spectral sequence of a filtered
complex C∗ one has that the differential dr : Ep,q

r −→ Ep+r,q−r+1
r is induced by the original differen-

tial; more precisely it is defined as a connecting homomorphism (essentially the original differential)
followed by a projection. In terms of the Khovanov bidegree, this means that dr raises the homological
degree by 1 and the q-degree by r, and we conclude by the Key observation 4.2.

Remark 4.4. In fact, one can even show that each of the pages of the spectral sequence is a link invariant
itself.

Example 4.5. Let us take 41 the figure-of-eight knot. One can compute that

Khi,j(41) =

{
Q, (i, j) = (2, 5), (1, 1), (0, 1), (0,−1), (−1,−1), (−2,−5)
0, else

Therefore the E1-page looks as follows, where Ep,q
1 = Khp+q,p(41):
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By Theorem 4.3, the first differential that might be non-trivial is d4, which has bidegree (4,−3) (recall
that dr : Ep,q

r −→ Ep+r,q−r+1
r ), so we have
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Q

and by degree reasons higher differentials cannot kill other copies. So the two red arrows must be
isomorphisms, and the only copies that survive are those in spectral bidegrees (0,−1) and (0, 1). In
particular the Rasmussen s-invariant must be 0; recall that the two surviving generators have filtration
degrees s(K)± 1.

Let me explain why on Earth one would be interested in such a spectral sequence if we know the
value of Lee•(L) for any link by Theorem 3.1. Typically, one thinks of a spectral sequence as an algebraic
gadget which starts with something that we know about and which converges to something that we
want to know about. But there are numerous examples where one studies a spectral sequence starting
with something we want to know about and converging to something we already know, and by some
kind of reverse engineering we infer the values of the early page7. This is one such example.

If we think for a moment of Khovanov homology as a link homology theory (in the sense of Eilenberg-
Steenrood, cf. [Tur16, §1]), then one should not use the construction sketched in Section 1 to compute
the values of Khovanov homology. Instead, one should use the characterising properties of Khovanov
homology, namely

• isotopy invariance,

• the value at the unknot (normalisation),

• behaviour under disjoint unions,

• a computational tool, namely the (family of) long exact sequence described at the end of Section 1.

7For the algebraic topology-minded reader: this is just another day at the office. Via this reverse engineering it is how one
applies the Serre spectral sequence to compute the cohomology of CPn or ΩSn using the fibre sequences S1 −→ S2n+1 −→ CPn

and ΩSn −→ PSn −→ Sn, respectively.
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This is standard in algebraic topology: to compute the (co)homology of e.g. spheres, we do not use
a combinatorial model –say, simplicial complexes–, and then carry out the cumbersome computation
of simplicial (co)homology. Instead, we use the Mayer-Vietoris sequence together with the homotopy
invariance of (co)homology and the values at the one-point space.

Let us attempt to compute the Khovanov homology of the right-handed trefoil T2,3 using this ap-
proach, by means of using the long exact sequences from Section 1 applied to one of its positive cross-
ings. Its 0-resolution is the Hopf link H with two positive crossings, whereas its 1-resolution is
the diagram of the unknot U with two negative crossings. We have chosen an arbitrary orientation for
it, so that c = n−( )− n−( ) = 2 in this case.

(10)

By the normalisation axiom, Kh(U) = Q(0,1) ⊕Q(0,−1), and using e.g. the long exact sequence one can
prove that

Khi,j(H) =

{
Q, (i, j) = (0, 0), (0, 2), (2, 4), (2, 6),
0, elsewhere.

The long exact sequence of the given crossing looks as follows:

· · · Khi−3,j−8(U) Khi,j(T2,3) Khi,j−1(H)

Khi−2,j−8(U) Khi+1,j(T2,3) · · ·

It is easy to see that

Khi,j(T2,3)
∼=−→ Khi,j−1(H) , if (i ̸= 3 and j ̸= 7, 9) or (i ̸= 2 and j ̸= 7, 9),

which determines the values of Khi,j(T2,3) for all but 4 pairs of indices. From the exact sequence it also
follows that

Q ∼= Kh0,1(U)
∼=−→ Kh3,9(T2,3) , 0 ∼= Kh1,1(U)

∼=−→ Kh2,9(T2,3).

However in order to determine Kh2,7(T2,3) and Kh3,7(T2,3) we run intro trouble: reading off the long
exact sequence we get an exact sequence

0 −→ Kh2,7(T2,3) −→ Q −→ Q −→ Kh3,7(T2,3) −→ 0,

and just from this it is not possible to decide whether the middle map is an isomorphism (so Kh2,7(T2,3) ∼=
0 ∼= Kh3,7(T2,3)) or the zero map (so Kh2,7(T2,3) ∼= Q ∼= Kh3,7(T2,3)).

We can resolve the dichotomy by inspecting the Lee spectral sequence in one of the two possible
scenarios. If the former was true, Kh2,7(T2,3) ∼= Q ∼= Kh3,7(T2,3), the E1-page of the Lee spectral sequence
would look like

0 1 2 3 4 5 6 7 8 9 10

-6

-5

-4

-3

-2

-1

0

Q

Q

Q Q

Q

Q
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(recall that Ep,q
1 = Khp+q,p). We know that in the E∞ page only two copies of Q must survive. But by

degree reasons there are no differentials d4, d8, . . . that could kill the generators in bidegree (7,−5) and
(7,−4), so we conclude that Kh2,7(T2,3) ∼= 0 ∼= Kh3,7(T2,3).
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