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The aim of today’s lecture will be to relate our lovely K-theory with another area of math-
ematics, namely Functional Analysis. A kind of operators in a Hilbert space, called Fredholm
operators, turns out to be a classifying space for K-theory. Before getting down into business
let us recall some notions of functional analysis that will be treated during the talk:

A Banach space is a normed space (E, || · ||) which is complete. A closed subspace of
a Banach space is Banach too; and also the quotient by a closed subspace. A linear map
T : E −→ F between Banach spaces is continuous if and only if the image of the unit ball
is bounded, and ||T || := sup||e||≤1 ||T (e)|| < ∞ defines a norm in the space of operators or
linear and continuous maps from E to F , which we will denote as L (E,F ). If F is Banach,
so is L (E,F ), although E is just normed. Therefore, the dual space E∗ := L (E,C) is
always Banach. If T : E −→ F is a linear operator, the adjoint operator is T ∗ : F ∗ −→ E∗,
(T ∗f∗)(e) := f∗(T (e)), and ||T || = ||T ∗||.

A Hilbert space H is a vector space endowed with a complex inner product 〈·, ·〉, such
that the norm defined by ||v|| := +

√
〈v, v〉 makes H be complete. In these spaces, every

closed subspace V is complemented, H = V ⊕V ⊥. Moreover, the Riesz representation theorem
establishes an isometric anti-isomorphism between H and H∗, and the adjoint operator of
T : H −→ H is the unique operator T ∗ : H −→ H satisfying the equation

〈T (v), w〉 = 〈v, T ∗(w)〉.

A Banach algebra A is a Banach space with an associative and distributive product
satisfying λ(ab) = (λa)b = a(λb), ||ab|| ≤ ||a||||b|| and the unit element has norm 1. If E is
Banach, then L (E) := L (E,E) is a Banach algebra (with respect the composition).

Finally, recall that an operator ideal C ⊂ L = L (E) is a class of operators which contains
the finite-rank operators, C + C ⊂ C (closed under sums) and L C L ⊂ C (closed under
composition with any linear operator). For instance, the class K ⊂ L of compact operators
(ie, operators such that the image of the unit ball is relatively compact) form an operator ideal,
which we will use in the following.

1 Fredholm operators
Definition. Let H be a separable complex Hilbert space. A Fredholm operator is a linear
operator T : H −→ H such that KerT and CokerT are finite dimensional. We will denote as
F = F(H) the set of Fredholm operators.

Since KerT is closed, it is Hilbert as well. To see that the CokerT is Hilbert too, one has
to check that the condition about the dimension is enough to guarantee that ImT is closed.

Example 1.1 Consider

`2 := {x = (x1, x2, . . .) : ||x||2 =
( ∞∑
i=1
|xi|2

) 1
2

<∞}.
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The shift operators

L : `2 −→ `2 , L(x1, x2, . . .) = (x2, x3, . . .)
R : `2 −→ `2 , R(x1, x2, . . .) = (0, x1, . . .)

are Fredholm operators, since L is surjective and has a 1-dimensional kernel; and R is injective
and has a 1-dimensional cokernel.

Example 1.2 Let H be a separable Hilbert space, let {e0, e1, e2, . . .} be an orthonormal basis
and let k ∈ Z. The previous argument generalizes to the standard operator of index k,

Rk(ei) :=
{
ei−k, i ≥ k
0, i < k

.

–. For k = 0, there is no much to say: R0 = Id.
–. For k > 0, we have Rk(e0) = · · · = Rk(ek−1) = 0 and Rk(ek+p) = ep, p ≥ 0. In particular,

KerRk =< e0, . . . , ek−1 > and CokerRk = 0 because it is clearly surjective.
–. For k < 0, Rk(ei) = ei−k always, so it is injective and CokerRk =< ē0, . . . , ēk−1 >.

The following classical result of Functional Analysis relates Fredholm operators with compact
operators:

Theorem 1.3 (Fredholm) Let E be a Banach space. An operator T : E −→ E is Fredholm if
and only if there is R ∈ L (E) such that RT − Id and TR− Id are compact operators.

The proof relies on the fact that for any K : E −→ E compact, Id +K is Fredholm.

Now denote by K the class of linear and compact operators, and let L = L (E). Since K is
an operator ideal, we can consider the quotient B := L /K, which is a Banach algebra (usually
called the Calkin algebra).

Corollary 1.4 Denote by B∗ the subset of invertible elements, and π : L −→ B the canonical
projection. Then we have

F = π−1(B∗).

In particular, F is open in L .

Proof.

π−1(B∗) = {T ∈ L : [T ] is invertible}
= {T ∈ L : ∃[S] : [T ][S] = [Id], [S][T ] = [Id]}
= {T ∈ L : ∃[S] : [TS − Id] = 0, [ST − Id] = 0}
= {T ∈ L : ∃S : TS − Id, ST − Id are compact}
= F

From here it also follows that the composite of Fredholm operators is Fredholm: if T1, T2
Fredholm then [T1], [T2] are invertible, thus [T1][T2] = [T1T2] is Fredholm, what happens if and
only if T1T2 is Fredholm. We will come to a more general fact later.

Definition. Let T : H −→ H be a Fredholm operator. The index of T is the integer

IndT : = dim KerT − dim CokerT
= dim KerT − dim KerT ∗
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Example 1.5 If H is a finite-dimensional Hilbert space, then IndT = 0 for all (Fredholm)
operator T . Indeed,

IndT = dim KerT − dim(H/ ImT ) = dim KerT − (dimH − dim ImT )
= dim KerT + dim ImT − dimH = 0

Proposition 1.6 If two out of three operators T, S, ST are Fredholm, so is the third and it
holds

IndST = IndT + IndS.

Proof. For any linear maps T, S, one always has an exact sequence

0 −→ KerT −→ KerST −→ KerS −→ CokerT −→ CokerST −→ CokerS −→ 0

coming from the snake lemma applied to the diagram

0 H H ⊕H H 0

0 H H ⊕H H 0

T

(Id,T ) Tπ1−π2

ST⊕Id S

(S,Id) π1−Sπ2

If T, S are Fredholm, we already know that so is ST . If ST and either T or S are Fredholm, then
in any case KerT and CokerS are finite dimensional too; and in the previous exact sequence
5 out of 6 spaces are finite-dimensional (the only space in question is either KerS or CokerT ,
depending on the operator we assumed at first that was Fredholm, T or S, resp.), so all 6 must
be.

The claim about the indexes follows from the fact that a chain complex (of vector spaces)
which is exact has Euler characteristic 0, thus

0 = dim KerT − dim KerST + dim KerS
− dim CokerT + dim CokerST − dim CokerS

and rearranging the terms we conclude.

1.7 (Parametrized families) In general, we will be interested not in a single Fredholm op-
erator, but in a (continuously) parametrized family of operators. Formally this is a continuous
map

F : X −→ F

where X is a Hausdorff topological space (thought as the space of parameters) and F is topo-
logized with the norm topology inhered from L .

Now one wonders how the previous description about the index of a Fredholm operator can
be reformulated for a continuous family. Surprisingly the main ideas remain:

Lemma 1.8 Let T : H −→ H be a Fredholm operator and let V ⊂ H be a closed subspace of
finite codimension such that V ∩ KerT = 0. Then there is a neighbourhood U of T in F such
that V ∩KerS = 0 for all S ∈ U and

⋃
S∈U

H/S(V ) := U ×H
{(S, v) ∈ U ×H : v ∈ S(V )}

(topologized as a quotient of U ×H) is a trivial vector bundle over U .
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Proof. In first place we observe that H/T (V ) is finite dimensional, because H/V , CokerT are
too, the obvious map H/V −→ T (H)/T (V ) is surjective and there is a short exact sequence

0 −→ T (H)/T (V ) −→ H/T (V ) −→ CokerT −→ 0.

Therefore T (V ) is closed, and it admits an orthogonal complement W := T (V )⊥, which is
isomorphic to H/T (V ).

Now consider the continuous map

ϕ : L (H) −→ L (V ⊕W,H),

where ϕS : V ⊕ W −→ H is defined by ϕS(v, w) := S(v) + w. The observation is that
ϕT : V ⊕W −→ H is isomorphism. Indeed, obviously it is linear and surjective, but also is
injective, because if T (v) + w = 0, then T (v) ∈ W = T (V )⊥, so T (v) = 0 and then v = 0
because V ∩ KerT = 0 (and of course w = −T (v) = 0), so it is an isomorphism of vector
spaces, and provided that it is continuous (sum of continuous functions) by the Open Mapping
theorem it is also an isomorphism of Banach spaces (topological isomorphism). Therefore, since
being isomorphism is an open condition, there is a neighbourhood U of T in F such that ϕS is
isomorphism for all S ∈ U .

Now both assertions are easy to check: if v ∈ V ∩ KerS, then ϕS(v, w) = w = ϕS(0, w),
so v = 0. For the second one first note that the the isomorphism ϕS ensures that S(V ) is
closed and that H/S(V ) is finite dimensional. Moreover, H/S(V ) ' W for all S ∈ U , that is,⋃
S∈U H/S(V ) is isomorphic to the trivial vector bundle U ×W .

Proposition 1.9 Let X be a compact space, and let F : X −→ F be a continuous family of
Fredholm operators. Then there exists V ⊂ H closed and of finite codimension such that

V ∩KerFx = 0 ∀x ∈ X

and
H/F (V ) :=

⋃
x∈X

H/Fx(V ) = X ×H
{(x, v) ∈ X ×H : v ∈ Fx(V )}

(topologized as a quotient of X ×H) is a vector bundle over X.

Proof. For each x ∈ X consider Vx := (KerFx)⊥, which are closed and finite codimensional.
By the lemma, there exist neighbourhoods Ũx of the Fx’s in F satisfying both conditions in
the previous lemma. Set Ux := F−1(Ũx), and by compactness take (Ui)ni=1 a finite open cover
of (Ux)x∈X , coming from points x1, . . . , xn. Now we claim that V :=

⋂n
i=1 Vxi is the desired

subspace. Indeed, it is again closed and finite codimensional, and clearly V ∩KerFx = 0 for all
x ∈ X provided that we took the intersection of all Vxi ’s. For the last assertion regarding the
vector bundle one argues as follows: Fx(V ) is closed and H/Fx(V ) is finite dimensional, by the
same argument as in the previous lemma. Moreover, the trivial vector bundles

⋃
S∈Ũi

H/S(V )
from the lemma provide trivial vector bundles

⋃
x∈Ui

H/Fx(V ) by the commutativity of the
following diagram: ⋃

x∈Ui
H/Fx(V )

⋃
S∈Ũi

H/S(V )

Ui Ũi
F

(this is a pullback diagram), which stablish the local trivializations of H/F (V ), ensuring that
it is a vector bundle over X.
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Definition. Let X be a compact space, and F : X −→ F continuous. The index of F is

IndF : = [H/V ]− [H/F (V )] ∈ K(X)

where H/V stands for the trivial bundle X ×H/V .

At first sight one might think that this has nothing to do with the notion of index for
Fredholm operators. Luckily this is not the case: for X = ∗ the one-point space, then a
continuous family F : ∗ −→ F is simply an operator T = F∗. Using that K(∗) ' Z, where the
isomorphism is given by the dimension of the vector bundle, and taking V to be (KerT )⊥, we
have

IndF = [H/V ]− [H/F (V )] = dimH/(KerT )⊥ − dimH/T ((KerT )⊥)
= dim KerT − dimH/ ImT = dim KerT − dim CokerT = IndT.

recovering the usual notion of the index.

Lemma 1.10 IndF is a well-defined class in K-theory.

Proof. We need to show that IndF is independent of the choice of the subspace V satisfying
the conditions of the previous lemma.

Let W ⊂ H be another subspace with W ∩KerFx = 0 for all x ∈ X. In first place suppose
that W ⊆ V . In such a case the inclusions W ⊂ V ⊂ H and F (W ) ⊂ F (V ) ⊂ H induce short
exact sequences of vector bundles

0 −→ V/W −→ H/W −→ H/V −→ 0 (1)
0 −→ V/W ' F (V )/F (W ) −→ H/F (W ) −→ H/F (V ) −→ 0

(the isomorphism in the second sequence comes from the fact that pointwise they do not intersect
the kernels). Now applying exercise 1 of Bjarne’s notes about the Euler characteristic of an exact
sequence of vector bundles we have that

[V/W ]− [H/W ] + [H/V ] = 0 = [V/W ]− [H/F (W )] + [H/F (V )]

so
[H/V ]− [H/F (V )] = [H/W ]− [H/F (W )].

For the general case where W is any subspace with the aforementioned property, just observe
that V ∩ W also satisfies the property, and by the previous step the index computed with
V ∩W ⊂ V is still the same. Arguing with the short exact sequences produced by the inclusions
V ∩W ⊂W ⊂ H and T (V ∩W ) ⊂ T (V ) ⊂ H we conclude.

2 Classifying spaces for K-theory
At this point it is more than reasonable to wonder: why do we care about continuous families
of Fredholm operators?

By 1.6, the composite of Fredholm operators is Fredholm, so it defines an associative oper-
ation

F × F −→ F , (T, S) 7→ S ◦ T

endowing F with a structure of monoid, with unit constIdH
. Now observe that for any space X,

the set [X,F ] of homotopy classes of continuous maps X −→ F inherits such a structure, where
for two maps F1, F2 : X −→ F , (F2F1)x := (F2)x(F1)x. The compatibility of the composition
with the homotopy relation is straightforward.

The goal of today’s lecture is precisely the following theorem:
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Theorem 2.1 (Atiyah-Jänich) Let X be a compact space. There is a natural monoid iso-
morphism

Ind : [X,F ] ∼−→ K(X).

That is, F represents K-theory.

Corollary 2.2 Ind : π0(F) ∼−→ Z is a bijection.

Proof. Take X = ∗ the one-point space in the previous theorem.

Almost the rest of the talk will be devoted to prove 2.1. We will divide the proof in several
steps.

Lemma 2.3 If f : Y −→ X is a continuous map and F : X −→ F is a continuous family of
Fredholm operators, then

f∗(IndF ) = Ind(F ◦ f).

Proof. If V ⊂ H is a choice for F , then note that V is also a choice for F ◦f , since V ∩KerFf(y) =
0 for all y ∈ Y . Therefore

f∗(IndF ) = f∗([H/V ]− [H/F (V )])
= [f∗(H/V )]− [f∗(H/F (V ))]
= [H/V ]− [H/(F ◦ f)(V )] = Ind(F ◦ f)

where we used that (f∗(H/F (V )))y ' H/Ff(y)(V ) = H/(F ◦ f)y(V ).

Proposition 2.4 Ind : [X,F ] −→ K(X) is a well-defined monoid homomorphism, which is
natural on X.

Proof. Firstly we show the independence of the homotopy class. If F0 is homotopic to F1 with
homotopy F : X × I −→ F , consider the inclusions ij : X −→ X × I, ij(x) = (x, j) for j = 0, 1.
Then we know that i∗0 = i∗1 : K(X × I) −→ K(X) because the restrictions of vector bundles to
X × {0} and X × {1} are isomorphic, so

IndF0 = Ind(F ◦ i0) 2.3= i∗0(IndF ) = i∗1(IndF ) 2.3= Ind(F ◦ i1) = IndF1.

Now we prove that Ind is a monoid homomorphism. Obviously [constId] maps to 0. Suppose
F,G : X −→ F are continuous families of Fredholm operators, and let V,W ⊂ H be the choices
of subspaces for F and G, respectively. Write H = W ⊕W⊥ and consider π : H −→ W and
ρ : H −→ W⊥ the orthogonal projections. Observe that Id− tρ : H −→ H is Fredholm for all
t ∈ I (for t = 1 is π and else isomorphism), so we can define a homotopy

h : X × I −→ F , h(x, t) := (Id− tρ) ◦ Fx

from F to π ◦F . Therefore we can assume that Fx(H) ⊂W and in particular that Fx(V ) ⊂W .
Concretely, V ∩ KerGxFx ⊂ V ∩ KerFx = 0, what means that V is also a choice for GF . As
before the inclusions F (V ) ⊂W ⊂ H and GF (V ) ⊂ G(W ) ⊂ H provide short exact sequences

0 −→W/F (V ) −→ H/F (V ) −→ H/W −→ 0 (2)
0 −→W/F (V ) ' G(W )/GF (V ) −→ H/GF (V ) −→ H/G(W ) −→ 0 (3)

so using again that the Euler characteristic of an exact sequence of vector bundles is the class
0,

IndGF = [H/V ]− [H/GF (V )]

6



(3)= [H/V ]− [W/F (V )]− [H/G(W )]
(2)= [H/V ]− [W/F (V )] + [H/W ]− [H/G(W )]
= IndF + IndG.

The assertion about the naturality means that for any continuous map f : Y −→ X there
is a commutative diagram

[X,F ] K(X)

[Y,F ] K(Y )

f∗

Ind

f∗

Ind

what follows immediately from 2.3.

Theorem 2.5 If X is a compact space, then there is an exact sequence of monoids

[X,L ∗] incl∗−→ [X,F ] Ind−→ K(X) −→ 0.

Proof. We start by the exactness at [X,F ]. On the one hand, for a family of operators F :
X −→ L ∗, we have that H is a choice for computing the index, since KerFx = 0 for all x ∈ X.
Therefore IndF = [H/H]− [H/F (H)] = 0. On the other hand, for a family F : X −→ F such
that IndF = 0, we have that [H/F (V )] = [H/V ] for some V ⊂ H disjoint with the kernels
pointwise. The condition is equivalent to say that H/F (V ) ⊕m ' H/V ⊕m for some m ≥ 0.
Now for any W ⊂ V such that dimV/W = m (in particular V/W ' Cm), the split short exact
sequences (1) ensure that

H/W
(1)
' (H/V )⊕m ' H/F (V )⊕m

(1)
' H/F (W ).

Note that for every x ∈ X, Fx(W ) is still finite codimensional and closed, because the restriction
of a Fredholm operator to a closed, finite codimensional subspace is still Fredholm. Because of
that, there is a natural isomorphism of vector bundles H/F (W ) ' F (W )⊥. Consider now the
composite

H/W
∼−→ H/F (W ) ∼−→ F (W )⊥ ↪→ X ×H.

It induces a continuous map φ : X −→ L (H/W,H), where φx takes H/W isomorphically to
Fx(W )⊥ for every x ∈ X. But we also have that Fx : W −→ Fx(W ) is isomorphism (being
W ∩KerFx = 0 for all x ∈ X), so we conclude that the direct sum

φx ⊕ Fx : H/W ⊕W = H −→ H = Fx(W )⊕ Fx(W )⊥

is isomorphism as well. This defines a continuous map

φ⊕ F : X −→ L ∗ ⊂ F

which is homotopic to F via the obvious homotopy (tφ)⊕ F .

It remains to prove the exactness atK(X), that is, to show that Ind is surjective. We already
know that every element of K(X) is of the form [E]−m for some vector bundle E −→ X. The
term −m is easy to get: just set R−m : X −→ F , (R−m)x := R−m, where R−m : H −→ H
is the standard operator of index −m defined in 1.2. We saw that it is injective, thus H is a
choice for computing the index, so IndR−m = [H/H] − [H/R−m(H)] = −[CokerR−m] = −m.
Now let us find F : X −→ F with the property that IndF = [E]. We can find an orthogonal
complement E⊥ to E such that E ⊕ E⊥ ' N . For every point write

πx : CN = Ex ⊕ E⊥x −→ Ex
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for the orthogonal projection. As H is Hilbert, CN ⊗H is Hilbert too. Let {v1, . . . , vN} be an
orthonormal basis of CN and let {e0, e1, . . .} be an orthonormal basis of H, so that {vi⊗ej} is an
orthonormal basis for CN ⊗H, with respect the inner product 〈vi⊗ej , vr⊗es〉 = 〈vi, vr〉〈ej , es〉.
Moreover, CN ⊗H and H are isomorphic, because they are both separable Hilbert spaces.

Let n < N be the rank of E, and suppose {v1, . . . , vn} is a basis of Ex (we are viewing
CN = Ex ⊕ E⊥x ). Define

ψ : X −→ F(CN ⊗H) ' F(H) = F , ψx := πx ⊗R1 + (IdCN − πx)⊗ IdH .

Now the claim is that ψx is surjective and its kernel is spanned by {v1⊗e0, . . . , vn⊗e0}. Indeed,
for c =

∑N
i=1 λivi ∈ CN and u ∈ H we have

ψx(c⊗ u) = ψx(v1 ⊗ λ1u+ · · ·+ vN ⊗ λnu)
= v1 ⊗ λ1R1(u) + · · ·+ vn ⊗ λnR1(u) + vn+1 ⊗ λn+1u+ · · ·+ vN ⊗ λNu.

This shows that ψx is surjective, because R1 is surjective and KerR1 =< e0 >. In particular,
to get λvi ⊗ ej one just needs to choose c = λvi and u = ej+1. For the kernel of ψx one
argues as follows: if ψx(c ⊗ u) = 0, then one of the following three conditions should hold:
(i) u = 0; (ii) c = 0 , or (iii) u = e0 and c ∈ Ex, that is, λn+1 = · · · = λN = 0. In
particular, Kerψx =< v1 ⊗ e0, . . . , vn ⊗ e0 >' Ex. The upshot is that we can take V =<
v1 ⊗ e0, . . . , vn ⊗ e0 >

⊥⊂ CN ⊗H ' H and therefore

Indψ = [CN ⊗H/V ]− [CN ⊗H/ψ(V )] = [E]− 0 = [E],

and we conclude that the composite ψR−m is the desired map,

Ind(ψR−m) = Indψ + IndR−m = [E]−m.

The proof was quite hard but now 2.1 is an immediate consequence of a well-known result
of Functional Analysis:

Theorem 2.6 (Kuiper) L ∗ is contractible.

The only objection we could have is that we obtained an isomorphism of monoids, whereas
K(X) has a richer structure (ring structure). If instead of maps to F we consider maps to B∗
the set of invertible elements of B = L /K) we get a group structure on [X,B∗] (now we have
inverses and the unit is the class [constIdH

]). This happens to be compatible with the previous
isomorphism:

Theorem 2.7 Let X be compact. There is a natural group isomorphism

Ind : [X,B∗] ∼−→ K(X).

That is, B∗ represents K-theory.

The proof will rely on the following general result of Functional Analysis:

Lemma 2.8 Let T : E −→ F an operator between Banach spaces, and let U ⊂ F be open. If
ImT is dense in F , then for any compact space X there is a bijection

[X,T−1(U)] ∼−→ [X,U ].

Proof of 2.7. Apply the lemma to π : L −→ B = L /K, recalling that B∗ is open and F =
π−1(B∗).
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Remark 2.9 For reduced K-theory of pointed spaces, 2.1 can be expressed as

K̃(X) = [(X,x0), (F , IdH)]∗

where the lower star refers to basepoint preserving homotopy classes of basepoint preserving
maps. Now the loop-suspension adjunction ensures that

K̃n(X) = K̃(ΣnX) ' [ΣnX,F ]∗ ' [X,ΩnF ]∗.

The periodicity of the reduced K-theory K̃0 = K̃2 suggests that F and Ω2F might be homotopy
equivalent, but one cannot conclude directly since X is required to be compact and F is not.
In fact the result is true but to show the equivalence one requires more machinery, namely to
make sure that F has the homotopy type of a CW-complex, which is true because F is an open
subset of a locally convex space (see [3]).

References
[1] Atiyah, M. Lecture Notes on K-Theory. 1967.

[2] Driver, B. K. Compact and Fredholm Operators and the Spectral Theorem. http://www.
math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/compact.pdf.

[3] Milnor, J. On spaces having the homotopy type of cw-complex. Transactions of the
American Mathematical Society 90, 2 (1959), 272–280. http://www.ams.org/journals/
tran/1959-090-02/S0002-9947-1959-0100267-4/S0002-9947-1959-0100267-4.pdf.

[4] Mukherjee, A. Atiyah-Singer Index Theorem - An Introduction. Hindustan Book Agency,
2013.

[5] Navarro González, J. A. Notes for a Degree in Mathematics. 2018. http://
matematicas.unex.es/~navarro/degree.pdf.

[6] Schrohe, E. Fredholm Operators. http://www2.analysis.uni-hannover.de/~schrohe/
Lehre/Index/index2.pdf.

9

http://www.math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/compact.pdf
http://www.math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/compact.pdf
http://www.ams.org/journals/tran/1959-090-02/S0002-9947-1959-0100267-4/S0002-9947-1959-0100267-4.pdf
http://www.ams.org/journals/tran/1959-090-02/S0002-9947-1959-0100267-4/S0002-9947-1959-0100267-4.pdf
http://matematicas.unex.es/~navarro/degree.pdf
http://matematicas.unex.es/~navarro/degree.pdf
http://www2.analysis.uni-hannover.de/~schrohe/Lehre/Index/index2.pdf
http://www2.analysis.uni-hannover.de/~schrohe/Lehre/Index/index2.pdf


PROBLEMS

1. If T : H −→ H is Fredholm then ImT is closed.(Hint: Use the Open Mapping theorem.)

2. Let T : H −→ H be a Fredholm operator.

(a) Show that CokerT ' KerT ∗, for T : H −→ H Fredholm. (Hint: Show in first place
that KerT ∗ = (ImT )⊥).

(b) Consider an orthonormal basis {ei : i ≥ 0} of H and set Hn := span{ei : i ≥ n}
=< e0, . . . , en−1 >

⊥, and write Pn : H −→ Hn ⊂ H for the orthogonal projection.
Show that for n ∈ N large enough, IndT = dim KerTn − n, where Tn = Pn ◦ T .
(Hint: Choose an orthonormal basis such that Hn ⊂ ImT . )

3. If T : H −→ H is Fredholm, then T ∗ : H −→ H is Fredholm too and IndT ∗ = − IndT .
Show also that the same formula holds for a parametrized family of Fredholm operators:
given a continuous map F : X −→ F , and writing F ∗ : X −→ F , (F ∗)x := (Fx)∗, show
that IndF ∗ = − IndF .

4. Consider the family F : X = {0, 1, 2, 3, 4, 5} ⊆ Z −→ F(`2) defined by Fk := Rk. Compute
IndF ∈ K(X).

5. Let T1 : H1 −→ H1, T2 : H2 −→ H2 be Fredholm operators. Then T1 ⊕ T2 : H1 ⊕H2 −→
H1 ⊕H2 is Fredholm and Ind(T1 ⊕ T2) = IndT1 + IndT2.

6. If T : H −→ H is Fredholm and S : CN −→ CN is an isomorphism, then T ⊗ S : H ⊗
CN −→ H⊗CN is Fredholm and Ind(T⊗S) = N ·IndT . (Hint: Ker(T⊗S) = KerT⊗CN ,
Im(T ⊗ S) = ImT ⊗ CN and Coker(T ⊗ S) ' CokerT ⊗ CN ).

7. Let F : X −→ F be a parametrized family of Fredholm operators. Show that the function
dim KerF : X −→ Z, x 7→ dim KerFx is semi-continuous, that is, for any point x0 there
is a neighbourhood U of x0 such that dim KerFx0 ≥ dim KerFx for all x ∈ U .

Hand-in exercises: 1 – 4.
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