LECTURE 8: EXAMPLES OF SULLIVAN MODELS
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9th April 2019

Today we will put into practice the machinery developed in the last lectures to compute ex-
amples of (minimal) Sullivan models. In the last part of the lecture we will compute a Sullivan
model for the pullback of a Serre fibration.

Last weeks there were lots of concepts and results introduced so recalling the ones we will
use today will not hurt anyone.

1 Recap of minimal Sullivan models

Let k be a field of char k # 0, in other words, let k be a field extension of Q.

Definition. Let (B,d) be a cdga with H(B) = k. A relative Sullivan algebra is a cdga of the
form (B® AV,d) where V = {V':i > 1} is a graded vector space together with an increasing
sequence V(0) C V(1) C --- of subspaces satisfying V = |J V(n) and such that

d:V(n) —BV(n-1) , n>0

where V(—1) := 0. We say that B is the base.
An (absolute) Sullivan algebra is a relative Sullivan algebra with B = k.

Definition. Let ¢ : (A,d) — (C,d) be a morphism of cdga’s, with H’(B) = k. A Sullivan
model for ¢ is a quasi-iso
m: (B®AV,d) — (C,d)

where (B ® AV, d) is a relative Sullivan algebra with base B and mp = ¢. 1

A Sullivan model for a cdga (C,d) is a Sullivan model for the morphism ¢ : k — (C,d),
that is, a quasi-iso
m: (AV,d) — (C,d)
where (AV,d) is a Sullivan algebra.
If X is a path-connected space, a Sullivan model for X is a Sullivan model for Apy(X) :=
Apr(S(X)) = Homeset (S(X)s, Apr(A®)). Here Apy, : Top’”” — cdga is the functor of polyno-
mial differential forms.

Definition. A Sullivan algebra (AV,d) is minimal if Imd C A=2V.
In general, we will talk about the minimal Sullivan algebra of a cdga / space, since

Theorem 1.1 Every morphism of cdga’s ¢ : (B,d) — (C,d) with H*(B) = k = H°(C) and
@« : HY(B) — H(C) injective has a unique minimal Sullivan model up to isomorphism.

Corollary 1.2 Every cdga (A,d) with H°(A) = k has a unique minimal Sullivan model up to iso-
morphism.

1For cdga’s B, AV, there is a natural morphism B — B® AV, b — b ® 1. Then the restriction m|p means the
composite with this morphism.



Corollary 1.3 Every path-connected space has a unique minimal Sullivan model up to isomorphism.

Definition. Let (B ® AV, d) be a relative Sullivan algebra and let ¢ : B — k be an augmenta-
tion. The Sullivan fibre at ¢ is the pushout cdga

(B, d) k

J |

(BRAV,d) —— (AV,d) 2 k®p (B® AV,d)

Minimal Sullivan model of a Serre fibration

For the rest of the section we consider the following

Setup: Let X be a path-connected space, let Y be a simply connected space, andletp : X — Y
be a Serre fibration. Also, let yo € Y and suppose that the fibre F := p~(y,) is path-connected.
Lastly, suppose that either X or Y satisfy that all their homology groups with coefficients in k
are finite dimensional vector spaces.

So, in particular, we have a fibration sequence F <L> X 25 Y and p restrictstop : F —
Yo. Applying Apy. yields the commutative diagram of below. Here ¢ is viewed as an augment-
ation.

Apr(F) " Ap(X)

A ]

k ¢ € ApL(Y)

Lemma 1.4 We have that p* : H'(Y; k) — H'(X;k) is injective, thus there exists a Sullivan model
forp

m: (APL(Y) ®AVF,d) = (APL(X),d
Proof. By hypothesis 0 = m1(Y) = Hy(Y;Z), thus Hi(Y;k) Hi(Y;Z) ®z k = 0, thus
HY(Y;k) = Hy(Y;k)* = 0, as k is a field. Now apply 1.1. O

~—

14

Next we consider the Sullivan fibre at ¢, that is, the following pushout diagram of cdga’s.
By the commutativity of the previous diagram and the universal property of the pushout, there
is a unique 71 making the diagram commutative.

APL(Y) % k

L

(APL(Y)®AVp,d) — (AVp,d)

m N
SA

Apr(X) Apr(F)
\L/

Theorem 1.5 Under the previous setup, the Sullivan fibre at € is a Sullivan model for the fibre of p,
that is,

m: (AVF,E) i> ApL(F)

is a quasi-isomorphism. Moreover, the Sullivan algebra (Apr(Y) ® AV, d) can be taken minimal, and
in that case m is the minimal Sullivan model of F.



This was shown by Yuqing last time. There are two further results that we will use today:

Theorem 1.6 Let (AVy,d) be a Sullivan model for Y and let (AVE,d) be the minimal Sullivan algebra
for F. Then X has a Sullivan model of the form (AVy ® AVg,d).

Theorem 1.7 Let my : (AVy,d) — Apr(Y) be a Sullivan model for Y. Given a relative Sullivan
algebra (AVy @ AW, d) and a cdga morphism

n: (AVY ®AW,d) — ApL(X)
restricting to p*my in (AVy,d), then
(i) The map n induces a morphismn : (AW,d) — App(F).

(ii) If ' is a quasi-isomorphism, so is n, thus (AVy @ AW, d) is a Sullivan model for X.

2 Examples of minimal Sullivan models

We will start with some easy examples where fibrations are not needed yet. I will denote by
H*(X;k) the cohomology ring of a topological space X with coefficients in k. This is a cdga
with trivial differential and the cup product is the graded commutative product.

Moreover, I will use the following (useful) notation: if V is a graded vector space with basis
ei,...,en, |ei| = r;, and differentials de; = ejep, de; = - - -, I will write the exterior algebra of V
as

(AV,d) = A(eq,...en;deg = erep,dep = -+ ).

~

Example 2.1 (Spheres) In the course of Algebraic Topology 2 it is shown that H*(S"; k) =
k[x]/(x?), generated by a class x of degree n. In particular, since the cup product is graded

~

commutative, we might as well write H*(S";k) = A(x)/(x?). More specifically, for n odd, we

havex — x = (—1)”2x — x = —x — x,50 x — x = 0 directly and there is no even need to kill
x2, that is, if n is odd then H*(S"; k) = A(x).

Recall from Jaco’s talk that there is a quasi-isomorphism C*(X;k) ~ Apr(X) inducing an
isomorphism H*(X;k) = H*(ApL(X)). Then let x, € Apr(S")" be a representative of x €
H"(S"; k).

e (Case n odd): There is a natural morphism
m: (A(e),0) — App(S") , m(e) =x,, le|=mn,
which happens to be a quasi-isomorphism trivially by the observation done above.

e (Case n even): Now x2 € Ap.(S")>" represents the 0 class in cohomology, thus it must be
a coboundary, ie, there is x5,_1 € Apr(S")?"~1 such that dxy, 1 = x2. Now the claim is
that the map

m: Aee;de’ =e?) — Apr(S") , m(e) = xp,m(e) = x2,_1, le|=mn,]¢| =2n—1
is a quasi-isomorphism. Indeed, the cochain complex looks like

0 n 2n—1 d 2n
k—0— - — () — 0 — -+ — (x0y_1) — (x2) — -+~

so it has only non vanishing cohomology in degrees 0 and 7.



Example 2.2 (Complex projective spaces) Again, we take from Algebraic Topology 2 that
H*(CP";Z) = Z[x]/(x"!) (with graded commutative product). Then

H*(CP"; k) = H*(CP"; Z) @z k = A(x)/(x"),
where |x| = 2.

Let x, € Apr(CIP")? be a representative of x € H?(CP";k). Then x} ! € Apy(CP")?"+2
represents the 0 class in cohomology, thus it is a coboundary, ie, there is x5, 11 € App (CIP")?*+1
such that dxy, 11 = x?“. As before, consider the map

m: Aee;de’ = e = App(S") , mle) = xo,m(e)) = xpui1, le| =2,]¢| =2n+1.
A similar computation as before shows that this is a quasi-isomorphism and therefore a min-
imal Sullivan model for CIP".

Example 2.3 (Product of spaces) Let X, Y be path-connected topological spaces and suppose
that the homology groups with coefficients in k of both X and Y are finite dimensional vector
spaces.

Let my : (AV,d) = Apr(X), my : (AW, d) = Apr(Y) be the minimal Sullivan models
for Xand Yandlet 1y : X XY — X and mp : X X Y — Y be the projections. The chain of
quasi-isomorphisms

my@my QT3

(AV@AW,d) — ApL(X) X ApL(Y) — ApL(X X Y)

shows that (AV ® AW, d) is the minimal Sullivan model for X x Y. The second one is also a
quasi-isomorphism because the induced map in cohomology

H*(X;k) @ H*(Y;k) — H* (X x Y;k) ,  a®pBw mia — mp
is an isomorphism by the Kiinneth theorem (for fields), provided that the homology groups of

both spaces are finite dimensional vector spaces.

Example 2.4 (Loop space of spheres) Let X be a space and consider X! := F(X, I) the space
of continuous maps I — X, endowed with the compact-open topology. For xo € X, let
Py, X :={oc € X':0(0) = xo} and Oy, X := {0 € X' : 0(0) = (1) = x0}, with the subspace
topology. Then it is a fact that P, X is contractible and

p:P,X—X o o(1)
is a Hurewicz fibration with fibre over xo (2, X. We usually fix the point and drop it from the

notation.

In the case of the spheres S",n > 2, we have a fibration sequence
QS" — ps* 5 sn,
We again distinguish between two cases:

e (Case n odd): By example 2.1, m’ : (A(e),0) — Apr(S") is a minimal Sullivan model
for S". Now let

m: Ae,u;du =e) — Ap (PS") m(e) = p*m'(e), m(u) =t

with |e| = n,|u] =n—1and t € Apy(PS")"~! any cochain such that dt = p*m’(e) (there
exists as cocycles and coboundaries are the same, as PS" is contractible). By inspection,
m is a quasi-isomorphism . Therefore, by theorem 1.5, the minimal Sullivan model for
QS" is

7 : (A(u),0) — Apr(QS™).

4



e (Case n even): In this case the minimal Sullivan model for §"” was
m': (Ale,e),de’ =e?) — Ap (S") , m'(e) = xp,m'(¢)) = x2u_1, le| =n,l¢| =2n—1.

Now define
m: Ae, e, u,u’,du =e,du’ = ¢ —eu) — Ap(PS")

with
lel=n | =2n—-1 lul=n-1 , lu'| =2(n—1)
and
m(e) =p'm'(e) , m()=pm() , mu=t , m@)=*t

where t is again a cochain such that d(t) = p*m’(e) and ' is a cochain such that d(t') =
p*m'(e') —t- p*m’(e). After a painful checking, one sees that this is a quasi-isomorphism,
and again by 1.5 we get that

i (A(u,u'),0) — Apr(QS™)
is the minimal Sullivan model for ()5".

Observe that as corollary, we have just shown that for n > 2,

Au), |ul=n-1 n odd

H*(QS" k) =
( ) {A(u,u/), lul =n—1,|lul =2(n—1) neven.

Example 2.5 (Eilenberg-MacLane spaces) Let A be a finite generated abelian group and let
K(A,n) be the (up to weak homotopy equivalence) Eilenberg-MacLane space of type (A, n),
n > 1. We will show that

m: (AH"(K(A,n);k),0) — Apr(K(A,n))

is the minimal Sullivan model of K(A, n). This implies that H*(K(A, n); k) is the exterior al-
gebra on H"(K(A, n); k) when n is odd and the polynomial algebra on H" (K(A, n); k) when n
is even (just by degree reasons).

For our purpose, let V := Homgroup (A, k). Then the first observation is that H" (K(A, n); k) =
V. Indeed, the Hurewicz theorem implies that H,(K(A,n); Z) = A, thus tensoring with k we
get H,(K(A,n); k) = A ®z k, which is a vector space of finite dimension. Since we are working
with a field, the dual of homology is cohomology, thus

H" (K(A,n);k) = Homk—vs<Hn <K(A/n);k)/k> = Homk—vs(A ®zk, k) = Homgroup(A, k) =V.

Now we show the statement by induction: for n =1, letay, ..., a, € A represent a basis of
A ®z k, and consider the group homomorphism

p:Z®--dZ—A p(ei) = a;.
We need the following result from the general theory of Eilenberg-MacLane spaces:

Theorem 2.6 Let n > 1 be an integer and let ¢ : A’ — A be a group homomorphism between abelian
groups. Then there is a unique homotopy class of maps

f:K(A',n) — K(A,n)

such that f, = ¢.



Applying this result to our previous morphism, we get a continuous map f : K(Z',2) —
K(A,?2) such that f, = ¢. Tensoring with k, we get that

fi@Id=9®f:m(K(Z%2) k=2 Z'0k — Ak = m(K(A,2) @k

is an isomorphism of finite-dimensional vector spaces, since it maps basis to basis. At this
point we need an extra ingredient:

Theorem 2.7 (Whitehead-Serre) Let f : X — Y be a map between simply connected spaces. Then
the following are equivalent:

(@) fi®Id: m(X) ® Q — 1,(X) ® Q is an isomorphism for all n.
(b) f.:Hy(X;Q) — Hu(Y;Q) is an isomorphism for all n.
(c) (QAf )« : Hy(QX; Q) — H,(QY; Q) is an isomorphism for all n.
Therefore, taking k = Q, we get that
(Qf) : Hy(QK(Z',2); Q) — H,(QK(A,2);Q)

is an isomorphism. But since QK (A, 2) is a K(
that

;Q)
A, 1), we get after tensoring with k and dualizing

H*(K(A,1);k) — H*(K(Z',1);k)

is an isomorphism. But S! x T x S'isaK(Z’,1),and by Kiinneth
H*(S' x-"-x SLk) = H*(SLk) @ - - @ H*(SL; k) =2 Alxy, ..., x)

with |x1| = 1. The latter is therefore the minimal Sullivan model for a K(A, 1).

For the general case, we first observe that there is a fibration sequence
K(A,n—1) ~ QK(A,n) — PK(A,n) — K(A,n).

By induction, (AV"1,0), where V"1 = V = Homgroup (4, k), is the minimal Sullivan model
for K(A,n — 1) (the superscript makes reference to the degree of its elements when viewed as
a graded vector space). In particular, its homology groups are finite dimensional.

Let (AE, d) be the minimal Sullivan model for K(A, ). By theorem 1.7.(ii), we get a quasi-
isomorphism
(AE® AV 1, d) = Ap (PK(A,n)).

We need one more technical result:

Lemma 2.8 Let (B,d) be a cdga with H*(B) = k and let m : (AV,d) — (B, d) be the minimal
Sullivan model for (B,d). If r > 0 is the least integer such that H'(B) # 0, then Vi = 0 for all
1<i<r.

By Hurewicz, H'(K(A,n);k) = 0 for all 1 < i < n; and by the previous lemma, E' =
for all 1 < i < n, and by minimality the differential must be trivial in E"”. On the other hand,
the above quasi-isomorphism yields H*(AE ® AV"~!) = k, which means that AE @ AV"~1 2
A(E & V"1) is a contractible Sullivan algebra, that is, the differential induces an isomorphism

d:V"' Sy EandE=E'2V = Homgoup (A, k) concentrated in degree 7.
Example 2.9 (Rational homotopy type of Eilenberg-MacLane spaces) Let [0, : S" — K(Z,n)]

be a generator of 77,(K(Z, n)) = Z. By the naturality of the Hurewicz homomorphism we get
a commutative diagram



Z = 1, (S") MCOLN

~

hnlg glhn

Hy(5":Z) —7 s H,(K(Z,n);Z)

so 0, also induces isomorphism in n-th homology. After tensoring with Q and dualizing, we
get that
o, : H'(K(Z,n);Q) — H"(5";Q)

is an isomorphism as well. Moreover, for n > 2 consider the map Qo : QS" — QK(Z,n) ~
K(Z,n — 1). By the naturality of the long exact sequence of the Serre fibration, we get that

(Qoy)s : m—1(QS") — M1 (K(Z,n — 1))
is an isomorphism as well. Repeating the argument of the naturality of Hurewicz, we get that
(Qa)" s H" 1 (K(Z,n —1);Q) — H"(0S";Q)

is also isomorphism. Lastly, observe that the computations done in examples 2.4 and 2.5 imply
that

T3ui1 s H(K(Z,2n+1);Q) — H*($*"*1;Q)

and
(Q02441)" : H*(K(Z,21);Q) — H*(Q5*"*; Q)

are isomorphisms, and by the Whitehead-Serre theorem 2.7 we conclude that
Opi1: S — K(Z,2n+1) , Qoyyq: QS — K(Z,20n)

are rational homotopy equivalences.

3 Sullivan model of the pullback of a fibration

For the last part of the talk, we will compute a Sullivan model for the pullback of a Serre
tibration. Recall that given a diagram of spaces

xLpdE

the fibre product or pullback of this diagram is the space
ExpX:={(e,x) cExX:ple)=f(x)} CExX
endowed with the subspace topology; and it is the the pullback of this diagram in Top.

Theorem 3.1 Let p : E — B be a Serre fibration between a path-connected space E and a simply
connected space B with fibre F := p~Y(by) and f : X —> B a continuous map with X simply
connected, where xo € X and by := f(xo). Suppose that B or F have finite dimensional homology
groups with coefficients in k, and consider the pullback diagram

ExgX 2L E

1T
x 7/ B

Given a commutative diagram of cdga’s



(AVx,d) «2— (AVs,d) —— (AVs® AV, d)

:lmX ElmB :imE

* *

ApL(X) — APL(B) P—> APL(E>
where (AVx,d) is a Sullivan model for X and (A Vg, d) is a Sullivan model for B, the following pushout
diagram of cdga’s produces a unique quasi-isomorphism ¢

mx

m
(AVg,d) ——— (AVx, d) Apr(X)
| o]
(AVB ® AVg, d) — (AVX ® AVE, d_> 7
:(]mg \\\\\\\é\
T
APL(E) ApL(E XB X)
T

which is a Sullivan model for E xp X.
Proof. In first place, given the morphisms ¢ and i, we perform the pushout
(AVx,d) @ avya) (AVB @ AVE,d) = (AVx ® AVE,d).
The outer diagram of above commutes since
Tmxe = 70 f*mp = 7y p*mp = mymei.
By the universal property of the pushout, there is a cdga map

¢: (AVX ®AVF,d> — ApL(E XB X)

such that the above diagram commutes. Now the key observation is that 71 restricts to a
homeomorphism on fibres,

my 7y (xg) =: F' — F = p~ (ko)

as F' = {(e,x0) : p(e) = by}, so they have isomorphic Sullivan models. Applying theorem 1.7
we conclude that ¢ is a quasi-isomorphism, as desired. O

Remark 3.2 The above theorem also holds under weaker hypothesis, where the starting dia-
gram is not necessarily a pullback of a fibration but a commutative square with Serre fibrations
as vertical maps. For further references see [1, Prop. 15.8]

Example 3.3 Next week, Kevin will use this theorem to compute a Sullivan model for the free
loop space XS =F (S1, X) of a simply connected space X.
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4 Problems

Please send by e-mail to j.becerragarrido@uu.nl, or return 23rd April.

. Compute the minimal Sullivan model of S x §12 x §123 x §1234,

. Let H be the division algebra of the quaternions. Consider S” C H? and S* = HIP!. The
latter space is built in a similar fashion as RP! or CIP!. Let p : S ¢ H> — S* = HP!,
p(u1,uz) := [uq : uz]. One can show that this map is a fibre bundle with fibre S, and it is
one of the so-called Hopf fibrations.

Compute a Sullivan model for the Hopf fibration S* «— §7 — S*.

. Compute the cohomology ring H®* (RIP*; k).
(Hint: RIP* is an Eilenberg-MacLane space).

. Check that
A(v1,v2,v3;dv1 = 0203, dvy = V301, dV3 = V107) , o1l =1,
is not a Sullivan algebra.

. (Bonus) Consider S®> C C? and S? = CP!. Under this homeomorphism, the point at
infinity corresponds to the north pole. Let p : S> C C> — S? = CP!, p(z1,22) := [z1 :
Zz].

(a) Show that the fibre at the point at infinite is S.

This is other of the so-called Hopf fibrations, so we have a fibration sequence S! —
S® — 52 Now let f: St — S1, f(z) ;== z" let Zf : £S! =2 §2 — S? = 35!, One can
show (e.g. Mayer- Vietoris) that this is also a map of degree n. Set

S? xq 8% = {(x,(z1,22)) €S*> xS : (Lf)(x) = [z1 : 22]}.

(b) Compute a Sullivan model for this space.
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