
LECTURE 8: EXAMPLES OF SULLIVAN MODELS

JORGE BECERRA GARRIDO

9th April 2019

Today we will put into practice the machinery developed in the last lectures to compute ex-
amples of (minimal) Sullivan models. In the last part of the lecture we will compute a Sullivan
model for the pullback of a Serre fibration.

Last weeks there were lots of concepts and results introduced so recalling the ones we will
use today will not hurt anyone.

1 Recap of minimal Sullivan models

Let k be a field of char k 6= 0, in other words, let k be a field extension of Q.

Definition. Let (B, d) be a cdga with H0(B) = k. A relative Sullivan algebra is a cdga of the
form (B⊗ΛV, d) where V = {Vi : i ≥ 1} is a graded vector space together with an increasing
sequence V(0) ( V(1) ( · · · of subspaces satisfying V =

⋃
V(n) and such that

d : V(n) −→ B⊗V(n− 1) , n ≥ 0

where V(−1) := 0. We say that B is the base.
An (absolute) Sullivan algebra is a relative Sullivan algebra with B = k.

Definition. Let ϕ : (A, d) −→ (C, d) be a morphism of cdga’s, with H0(B) = k. A Sullivan
model for ϕ is a quasi-iso

m : (B⊗ΛV, d) '−→ (C, d)

where (B⊗ΛV, d) is a relative Sullivan algebra with base B and m|B = ϕ. 1

A Sullivan model for a cdga (C, d) is a Sullivan model for the morphism ϕ : k −→ (C, d),
that is, a quasi-iso

m : (ΛV, d) '−→ (C, d)

where (ΛV, d) is a Sullivan algebra.
If X is a path-connected space, a Sullivan model for X is a Sullivan model for APL(X) :=

APL(S(X)) = HomsSet(S(X)•, APL(∆•)). Here APL : Topop −→ cdga is the functor of polyno-
mial differential forms.

Definition. A Sullivan algebra (ΛV, d) is minimal if Im d ⊂ Λ≥2V.

In general, we will talk about the minimal Sullivan algebra of a cdga / space, since

Theorem 1.1 Every morphism of cdga’s ϕ : (B, d) −→ (C, d) with H0(B) = k = H0(C) and
ϕ∗ : H1(B) −→ H1(C) injective has a unique minimal Sullivan model up to isomorphism.

Corollary 1.2 Every cdga (A, d) with H0(A) = k has a unique minimal Sullivan model up to iso-
morphism.

1For cdga’s B, ΛV, there is a natural morphism B −→ B⊗ΛV, b 7→ b⊗ 1. Then the restriction m|B means the
composite with this morphism.
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Corollary 1.3 Every path-connected space has a unique minimal Sullivan model up to isomorphism.

Definition. Let (B⊗ΛV, d) be a relative Sullivan algebra and let ε : B −→ k be an augmenta-
tion. The Sullivan fibre at ε is the pushout cdga

(B, d) k

(B⊗ΛV, d) (ΛV, d̄) ∼= k⊗B (B⊗ΛV, d)

Minimal Sullivan model of a Serre fibration

For the rest of the section we consider the following

Setup: Let X be a path-connected space, let Y be a simply connected space, and let p : X −→ Y
be a Serre fibration. Also, let y0 ∈ Y and suppose that the fibre F := p−1(y0) is path-connected.
Lastly, suppose that either X or Y satisfy that all their homology groups with coefficients in k
are finite dimensional vector spaces.

So, in particular, we have a fibration sequence F
j

↪−→ X
p−→ Y and p restricts to p : F −→

y0. Applying APL yields the commutative diagram of below. Here ε is viewed as an augment-
ation.

APL(F) APL(X)

k APL(Y)

j∗

p∗ p∗

ε

Lemma 1.4 We have that p∗ : H1(Y; k) −→ H1(X; k) is injective, thus there exists a Sullivan model
for p

m : (APL(Y)⊗ΛVF, d) '−→ (APL(X), d).

Proof. By hypothesis 0 = π1(Y) ∼= H1(Y; Z), thus H1(Y; k) ∼= H1(Y; Z) ⊗Z k ∼= 0, thus
H1(Y; k) ∼= H1(Y; k)∗ = 0, as k is a field. Now apply 1.1.

Next we consider the Sullivan fibre at ε, that is, the following pushout diagram of cdga’s.
By the commutativity of the previous diagram and the universal property of the pushout, there
is a unique m making the diagram commutative.

APL(Y) k

(APL(Y)⊗ΛVF, d) (ΛVF, d̄)

APL(X) APL(F)

ε

p∗

m

p

m

j∗

Theorem 1.5 Under the previous setup, the Sullivan fibre at ε is a Sullivan model for the fibre of p,
that is,

m : (ΛVF, d) '−→ APL(F)

is a quasi-isomorphism. Moreover, the Sullivan algebra (APL(Y)⊗ΛVF, d) can be taken minimal, and
in that case m is the minimal Sullivan model of F.
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This was shown by Yuqing last time. There are two further results that we will use today:

Theorem 1.6 Let (ΛVY, d) be a Sullivan model for Y and let (ΛVF, d) be the minimal Sullivan algebra
for F. Then X has a Sullivan model of the form (ΛVY ⊗ΛVF, d).

Theorem 1.7 Let mY : (ΛVY, d) −→ APL(Y) be a Sullivan model for Y. Given a relative Sullivan
algebra (ΛVY ⊗ΛW, d) and a cdga morphism

n : (ΛVY ⊗ΛW, d) −→ APL(X)

restricting to p∗mY in (ΛVY, d), then

(i) The map n induces a morphism n : (ΛW, d) −→ APL(F).

(ii) If n is a quasi-isomorphism, so is n, thus (ΛVY ⊗ΛW, d) is a Sullivan model for X.

2 Examples of minimal Sullivan models

We will start with some easy examples where fibrations are not needed yet. I will denote by
H•(X; k) the cohomology ring of a topological space X with coefficients in k. This is a cdga
with trivial differential and the cup product is the graded commutative product.

Moreover, I will use the following (useful) notation: if V is a graded vector space with basis
e1, . . . , en , |ei| = ri, and differentials de1 = e1e2, de2 = · · · , I will write the exterior algebra of V
as

(ΛV, d) = Λ(e1, . . . en; de1 = e1e2, de2 = · · · ).

Example 2.1 (Spheres) In the course of Algebraic Topology 2 it is shown that H•(Sn; k) ∼=
k[x]/(x2), generated by a class x of degree n. In particular, since the cup product is graded
commutative, we might as well write H•(Sn; k) ∼= Λ(x)/(x2). More specifically, for n odd, we
have x ^ x = (−1)n2

x ^ x = −x ^ x, so x ^ x = 0 directly and there is no even need to kill
x2, that is, if n is odd then H•(Sn; k) ∼= Λ(x).

Recall from Jaco’s talk that there is a quasi-isomorphism C•(X; k) ' APL(X) inducing an
isomorphism H•(X; k) ∼= H•(APL(X)). Then let xn ∈ APL(Sn)n be a representative of x ∈
Hn(Sn; k).

• (Case n odd): There is a natural morphism

m : (Λ(e), 0) '−→ APL(Sn) , m(e) = xn, |e| = n,

which happens to be a quasi-isomorphism trivially by the observation done above.

• (Case n even): Now x2
n ∈ APL(Sn)2n represents the 0 class in cohomology, thus it must be

a coboundary, ie, there is x2n−1 ∈ APL(Sn)2n−1 such that dx2n−1 = x2
n. Now the claim is

that the map

m : Λ(e, e′; de′ = e2)
'−→ APL(Sn) , m(e) = xn, m(e′) = x2n−1, |e| = n, |e′| = 2n− 1

is a quasi-isomorphism. Indeed, the cochain complex looks like

0
k −→ 0 −→ · · · −→

n
〈xn〉 −→ 0 −→ · · · −→

2n−1
〈x2n−1〉

d−→
2n
〈x2

n〉 −→ · · ·

so it has only non vanishing cohomology in degrees 0 and n.
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Example 2.2 (Complex projective spaces) Again, we take from Algebraic Topology 2 that
H•(CPn; Z) = Z[x]/(xn+1) (with graded commutative product). Then

H•(CPn; k) ∼= H•(CPn; Z)⊗Z k ∼= Λ(x)/(xn+1),

where |x| = 2.

Let x2 ∈ APL(CPn)2 be a representative of x ∈ H2(CPn; k). Then xn+1
2 ∈ APL(CPn)2n+2

represents the 0 class in cohomology, thus it is a coboundary, ie, there is x2n+1 ∈ APL(CPn)2n+1

such that dx2n+1 = xn+1
2 . As before, consider the map

m : Λ(e, e′; de′ = en+1)
'−→ APL(Sn) , m(e) = x2, m(e′) = x2n+1, |e| = 2, |e′| = 2n + 1.

A similar computation as before shows that this is a quasi-isomorphism and therefore a min-
imal Sullivan model for CPn.

Example 2.3 (Product of spaces) Let X, Y be path-connected topological spaces and suppose
that the homology groups with coefficients in k of both X and Y are finite dimensional vector
spaces.

Let m1 : (ΛV, d) '−→ APL(X) , m2 : (ΛW, d) '−→ APL(Y) be the minimal Sullivan models
for X and Y and let π1 : X × Y −→ X and π2 : X × Y −→ Y be the projections. The chain of
quasi-isomorphisms

(ΛV ⊗ΛW, d)
m1⊗m2−−−−→
'

APL(X)⊗ APL(Y)
π∗1⊗π∗2−−−→
'

APL(X×Y)

shows that (ΛV ⊗ ΛW, d) is the minimal Sullivan model for X × Y. The second one is also a
quasi-isomorphism because the induced map in cohomology

H•(X; k)⊗ H•(Y; k)
∼=−→ H•(X×Y; k) , α⊗ β 7→ π∗1 α ^ π∗2 β

is an isomorphism by the Künneth theorem (for fields), provided that the homology groups of
both spaces are finite dimensional vector spaces.

Example 2.4 (Loop space of spheres) Let X be a space and consider X I := F(X, I) the space
of continuous maps I −→ X, endowed with the compact-open topology. For x0 ∈ X, let
Px0 X := {σ ∈ X I : σ(0) = x0} and Ωx0 X := {σ ∈ X I : σ(0) = σ(1) = x0}, with the subspace
topology. Then it is a fact that Px0 X is contractible and

p : Px0 X −→ X , σ 7→ σ(1)

is a Hurewicz fibration with fibre over x0 Ωx0 X. We usually fix the point and drop it from the
notation.

In the case of the spheres Sn, n ≥ 2, we have a fibration sequence

ΩSn ↪−→ PSn p−→ Sn.

We again distinguish between two cases:

• (Case n odd): By example 2.1, m′ : (Λ(e), 0) '−→ APL(Sn) is a minimal Sullivan model
for Sn. Now let

m : Λ(e, u; du = e) −→ APL(PSn) , m(e) = p∗m′(e), m(u) = t

with |e| = n, |u| = n− 1 and t ∈ APL(PSn)n−1 any cochain such that dt = p∗m′(e) (there
exists as cocycles and coboundaries are the same, as PSn is contractible). By inspection,
m is a quasi-isomorphism . Therefore, by theorem 1.5, the minimal Sullivan model for
ΩSn is

m : (Λ(u), 0) '−→ APL(ΩSn).
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• (Case n even): In this case the minimal Sullivan model for Sn was

m′ : (Λ(e, e′), de′ = e2)
'−→ APL(Sn) , m′(e) = xn, m′(e′) = x2n−1, |e| = n, |e′| = 2n− 1.

Now define
m : Λ(e, e′, u, u′, du = e, du′ = e′ − eu) '−→ APL(PSn)

with

|e| = n , |e′| = 2n− 1 , |u| = n− 1 , |u′| = 2(n− 1)

and

m(e) = p∗m′(e) , m(e′) = p∗m′(e′) , m(u) = t , m(u′) = t′

where t is again a cochain such that d(t) = p∗m′(e) and t′ is a cochain such that d(t′) =
p∗m′(e′)− t · p∗m′(e). After a painful checking, one sees that this is a quasi-isomorphism,
and again by 1.5 we get that

m : (Λ(u, u′), 0) '−→ APL(ΩSn)

is the minimal Sullivan model for ΩSn.

Observe that as corollary, we have just shown that for n ≥ 2,

H•(ΩSn; k) ∼=
{

Λ(u), |u| = n− 1 n odd
Λ(u, u′), |u| = n− 1, |u| = 2(n− 1) n even.

Example 2.5 (Eilenberg-MacLane spaces) Let A be a finite generated abelian group and let
K(A, n) be the (up to weak homotopy equivalence) Eilenberg-MacLane space of type (A, n),
n ≥ 1. We will show that

m : (ΛHn(K(A, n); k), 0) '−→ APL(K(A, n))

is the minimal Sullivan model of K(A, n). This implies that H•(K(A, n); k) is the exterior al-
gebra on Hn(K(A, n); k) when n is odd and the polynomial algebra on Hn(K(A, n); k) when n
is even (just by degree reasons).

For our purpose, let V := Homgroup(A, k). Then the first observation is that Hn(K(A, n); k) ∼=
V. Indeed, the Hurewicz theorem implies that Hn(K(A, n); Z) ∼= A, thus tensoring with k we
get Hn(K(A, n); k) ∼= A⊗Z k, which is a vector space of finite dimension. Since we are working
with a field, the dual of homology is cohomology, thus

Hn(K(A, n); k) ∼= Homk−vs(Hn(K(A, n); k), k) ∼= Homk−vs(A⊗Z k, k) ∼= Homgroup(A, k) = V.

Now we show the statement by induction: for n = 1, let a1, . . . , ar ∈ A represent a basis of
A⊗Z k, and consider the group homomorphism

ϕ : Z⊕ r· · · ⊕Z −→ A , ϕ(ei) = ai.

We need the following result from the general theory of Eilenberg-MacLane spaces:

Theorem 2.6 Let n ≥ 1 be an integer and let ϕ : A′ −→ A be a group homomorphism between abelian
groups. Then there is a unique homotopy class of maps

f : K(A′, n) −→ K(A, n)

such that f∗ = ϕ.
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Applying this result to our previous morphism, we get a continuous map f : K(Zr, 2) −→
K(A, 2) such that f∗ = ϕ. Tensoring with k, we get that

f∗ ⊗ Id = ϕ⊗ f : π2(K(Z2, 2))⊗ k ∼= Zr ⊗ k −→ A⊗ k ∼= π2(K(A, 2))⊗ k

is an isomorphism of finite-dimensional vector spaces, since it maps basis to basis. At this
point we need an extra ingredient:

Theorem 2.7 (Whitehead-Serre) Let f : X −→ Y be a map between simply connected spaces. Then
the following are equivalent:

(a) f∗ ⊗ Id : πn(X)⊗Q −→ πn(X)⊗Q is an isomorphism for all n.

(b) f∗ : Hn(X; Q) −→ Hn(Y; Q) is an isomorphism for all n.

(c) (Ω f )∗ : Hn(ΩX; Q) −→ Hn(ΩY; Q) is an isomorphism for all n.

Therefore, taking k = Q, we get that

(Ω f )∗ : Hn(ΩK(Zr, 2); Q) −→ Hn(ΩK(A, 2); Q)

is an isomorphism. But since ΩK(A, 2) is a K(A, 1), we get after tensoring with k and dualizing
that

H•(K(A, 1); k)
∼=−→ H•(K(Zr, 1); k)

is an isomorphism. But S1 × r· · · × S1 is a K(Zr, 1), and by Künneth

H•(S1 × r· · · × S1; k) ∼= H•(S1; k)⊗ r· · · ⊗ H•(S1; k) ∼= Λ(x1, . . . , xr)

with |x1| = 1. The latter is therefore the minimal Sullivan model for a K(A, 1).

For the general case, we first observe that there is a fibration sequence

K(A, n− 1) ' ΩK(A, n) ↪−→ PK(A, n) −→ K(A, n).

By induction, (ΛVn−1, 0), where Vn−1 = V = Homgroup(A, k), is the minimal Sullivan model
for K(A, n− 1) (the superscript makes reference to the degree of its elements when viewed as
a graded vector space). In particular, its homology groups are finite dimensional.

Let (ΛE, d) be the minimal Sullivan model for K(A, n). By theorem 1.7.(ii), we get a quasi-
isomorphism

(ΛE⊗ΛVn−1, d) '−→ APL(PK(A, n)).

We need one more technical result:

Lemma 2.8 Let (B, d) be a cdga with H0(B) = k and let m : (ΛV, d) −→ (B, d) be the minimal
Sullivan model for (B, d). If r > 0 is the least integer such that Hr(B) 6= 0, then Vi = 0 for all
1 ≤ i < r.

By Hurewicz, Hi(K(A, n); k) = 0 for all 1 ≤ i < n; and by the previous lemma, Ei = 0
for all 1 ≤ i < n, and by minimality the differential must be trivial in En. On the other hand,
the above quasi-isomorphism yields H•(ΛE⊗ΛVn−1) = k, which means that ΛE⊗ΛVn−1 ∼=
Λ(E⊕Vn−1) is a contractible Sullivan algebra, that is, the differential induces an isomorphism
d : Vn−1 ∼=−→ E and E = En ∼= V = Homgroup(A, k) concentrated in degree n.

Example 2.9 (Rational homotopy type of Eilenberg-MacLane spaces) Let [σn : Sn −→ K(Z, n)]
be a generator of πn(K(Z, n)) ∼= Z. By the naturality of the Hurewicz homomorphism we get
a commutative diagram
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Z = πn(Sn) πn(K(Z, n)) = Z

Hn(Sn; Z) Hn(K(Z, n); Z)

(σn)∗
∼=

∼=hn hn∼=
(σn)∗

so σn also induces isomorphism in n-th homology. After tensoring with Q and dualizing, we
get that

σ∗n : Hn(K(Z, n); Q) −→ Hn(Sn; Q)

is an isomorphism as well. Moreover, for n ≥ 2 consider the map Ωσn : ΩSn −→ ΩK(Z, n) '
K(Z, n− 1). By the naturality of the long exact sequence of the Serre fibration, we get that

(Ωσn)∗ : πn−1(ΩSn) −→ πn−1(K(Z, n− 1))

is an isomorphism as well. Repeating the argument of the naturality of Hurewicz, we get that

(Ωσn)
∗ : Hn−1(K(Z, n− 1); Q) −→ Hn−1(ΩSn; Q)

is also isomorphism. Lastly, observe that the computations done in examples 2.4 and 2.5 imply
that

σ∗2n+1 : H•(K(Z, 2n + 1); Q) −→ H•(S2n+1; Q)

and
(Ωσ2n+1)

∗ : H•(K(Z, 2n); Q) −→ H•(ΩS2n+1; Q)

are isomorphisms, and by the Whitehead-Serre theorem 2.7 we conclude that

σ2n+1 : S2n+1 −→ K(Z, 2n + 1) , Ωσ2n+1 : ΩS2n+1 −→ K(Z, 2n)

are rational homotopy equivalences.

3 Sullivan model of the pullback of a fibration

For the last part of the talk, we will compute a Sullivan model for the pullback of a Serre
fibration. Recall that given a diagram of spaces

X
f−→ B

p←− E

the fibre product or pullback of this diagram is the space

E×B X := {(e, x) ∈ E× X : p(e) = f (x)} ⊂ E× X

endowed with the subspace topology; and it is the the pullback of this diagram in Top.

Theorem 3.1 Let p : E −→ B be a Serre fibration between a path-connected space E and a simply
connected space B with fibre F := p−1(b0) and f : X −→ B a continuous map with X simply
connected, where x0 ∈ X and b0 := f (x0). Suppose that B or F have finite dimensional homology
groups with coefficients in k, and consider the pullback diagram

E×B X E

X B

π1

π2 p

f

Given a commutative diagram of cdga’s
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(ΛVX, d) (ΛVB, d) (ΛVB ⊗ΛVF, d)

APL(X) APL(B) APL(E)

mX' mB'

ϕ i

mE'
f ∗ p∗

where (ΛVX, d) is a Sullivan model for X and (ΛVB, d) is a Sullivan model for B, the following pushout
diagram of cdga’s produces a unique quasi-isomorphism ξ

(ΛVB, d) (ΛVX, d) APL(X)

(ΛVB ⊗ΛVF, d) (ΛVX ⊗ΛVF, d̄)

APL(E) APL(E×B X)

i

ϕ

mX

'

π∗2

mE'

p

ξ

π∗1

which is a Sullivan model for E×B X.

Proof. In first place, given the morphisms ϕ and i, we perform the pushout

(ΛVX, d)⊗(ΛVB,d) (ΛVB ⊗ΛVF, d) ∼= (ΛVX ⊗ΛVF, d̄).

The outer diagram of above commutes since

π∗2 mX ϕ = π∗2 f ∗mB = π∗1 p∗mB = π∗1 mEi.

By the universal property of the pushout, there is a cdga map

ξ : (ΛVX ⊗ΛVF, d) −→ APL(E×B X)

such that the above diagram commutes. Now the key observation is that π1 restricts to a
homeomorphism on fibres,

π1 : π−1
2 (x0) =: F′

∼=−→ F = p−1(b0)

as F′ = {(e, x0) : p(e) = b0}, so they have isomorphic Sullivan models. Applying theorem 1.7
we conclude that ξ is a quasi-isomorphism, as desired.

Remark 3.2 The above theorem also holds under weaker hypothesis, where the starting dia-
gram is not necessarily a pullback of a fibration but a commutative square with Serre fibrations
as vertical maps. For further references see [1, Prop. 15.8]

Example 3.3 Next week, Kevin will use this theorem to compute a Sullivan model for the free
loop space XS1

= F(S1, X) of a simply connected space X.
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4 Problems

Please send by e-mail to j.becerragarrido@uu.nl , or return 23rd April.

1. Compute the minimal Sullivan model of S1 × S12 × S123 × S1234.

2. Let H be the division algebra of the quaternions. Consider S7 ⊂ H2 and S4 ∼= HP1. The
latter space is built in a similar fashion as RP1 or CP1. Let p : S7 ⊂ H2 −→ S4 ∼= HP1,
p(u1, u2) := [u1 : u2]. One can show that this map is a fibre bundle with fibre S3, and it is
one of the so-called Hopf fibrations.

Compute a Sullivan model for the Hopf fibration S3 ↪−→ S7 −→ S4.

3. Compute the cohomology ring H•(RP∞; k).

(Hint: RP∞ is an Eilenberg-MacLane space).

4. Check that

Λ(v1, v2, v3; dv1 = v2v3, dv2 = v3v1, dv3 = v1v2) , |v1| = 1,

is not a Sullivan algebra.

5. (Bonus) Consider S3 ⊂ C2 and S2 ∼= CP1. Under this homeomorphism, the point at
infinity corresponds to the north pole. Let p : S3 ⊂ C2 −→ S2 ∼= CP1, p(z1, z2) := [z1 :
z2].

(a) Show that the fibre at the point at infinite is S1.

This is other of the so-called Hopf fibrations, so we have a fibration sequence S1 ↪−→
S3 −→ S2. Now let f : S1 −→ S1, f (z) := zn let Σ f : ΣS1 ∼= S2 −→ S2 ∼= ΣS1. One can
show (e.g. Mayer- Vietoris) that this is also a map of degree n. Set

S2 ×S2 S3 := {(x, (z1, z2)) ∈ S2 × S3 : (Σ f )(x) = [z1 : z2]}.

(b) Compute a Sullivan model for this space.
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