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Proving algebra through topology

Even kindergarten kids (...) know that division is possible in R. By division
we understand that there is a multiplication and for every non-zero element
x ∈ R there is another element x−1 ∈ R such that xx−1 = 1. Once at school
one discovers the plane R2, the space R3, . . . and wonders if for these spaces one
can also define a multiplication with the property that every non-zero element
has an inverse. To ease the problem, instead of asking for a field structure (as
in R), we will not be so coarse and we will just ask for a division ring structure,
that is, a field but multiplication might be neither commutative nor associative.
Moreover, we also want to multiply by scalars λ ∈ R componentwise, giving rise
to a division algebra over R instead.
Question. For what n ∈ N is there a division algebra structure on Rn?

For R2, the answer seems easy: in the moment that we want to solve the
equation x2 + 1 = 0 we come up with a solution i which is not a real number,
so we start to consider pairs x+ yi, ie, pairs (x, y) on R2 with a multiplication

(x1, y1)(x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).

Observe that the neutral element is still (1, 0). For z = (x, y), setting z̄ :=
(x,−y) one soon discovers that zz̄ = (x2 + y2, 0) and therefore

(x, y)−1 =
(

x

x2 + y2 ,−
y

x2 + y2

)
whenever (x, y) 6= (0, 0). By a simple computation one even realizes that such
operation is associative and commutative, endowing R2 with a field structure,
and working it out a bit more one sees that it is even algebraically closed.

Ok, small victory. What happens with R3? The Irish mathematician W.R.
Hamilton (1805–1865) tried to answer this question. Although he did not
succeed, on his way he came up with a division algebra structure on R4, which
is called quaternions (denoted with H after him). Later J.T. Gravess and
A. Cayley discovered independently a division algebra structure on R8, called
octonions O.

Are there more? Throughout these notes we will try to solve this question
translating this algebraic problem to a topological problem. F.G. Frobenius
showed in 1877 that R, C and H are the only finite-dimensional associative
division algebras over R with unit, with a algebraic proof. What happens if we
drop the associativity? In 1964 F. Adams and M. Atiyah gave a very short
proof of this fact using topological K-theory and the Adams operations. This
was one major victory for the K-theory.
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1 Division algebras
Let us make rigorous the description we did before:

Warning. In these notes all rings will be considered with (left and right) unit
and not necessarily either associative or commutative. In other words, a ring
(R,+, ·) will be a set with two operations such that (R,+) is an abelian group
and (R, ·) is a magma with unit, such that the product is distributive with
respect to the sum.

Definition. A division ring R is a non-zero ringR without zero divisors except
0 and where every non-zero element is invertible. If R is also a k-algebra, we
say that R is a division algebra (over k).

Observe that if the ring is associative, then the condition of not having zero
divisors except 0 follows from the second property. It is clear that an associative,
commutative division ring is a field. With more effort, one can show that every
finite division ring is a field (Wedderburn’s Theorem).

Something surprising about division rings is that geometry makes possible
check if the associative or commutative property hold: if we consider P2 :=
(R3 − 0)/ ∼, , where R is a division ring, then we have:

R is commutative ⇐⇒ Pappus’ theorem holds in P2,

R is associative ⇐⇒ Desargues’ theorem holds in P2.

Examples 1.1 1. R and C ' R2 are fields, thus division algebras.

2. (Quaternions H, Hamilton 1843) Consider R4 with basis {1, i, j, k}
and define a product “·” determined by the identities

i2 = j2 = k2 = −1 , ijk = −1

and with unit 1 (so in general it is dropped). Every element can be
expressed as u = x + yi + zj + tk, and if the conjugate of u is ū :=
x− yi− jz− tk, a simple computation yields uū = x2 + y2 + z2 + t2, thus
by calling |u| := +

√
uū we obtain that

u−1 = ū

|u|2
= x− yi− zk − tk
x2 + y2 + z2 + t2

for all non-zero u, then it is a division algebra. R4 endowed with this
product is called the quaternions and it is denoted by H. It is easy to
check that the product is associative, but observe that it is not commut-
ative: ij = k, ji = −k.

3. (Octonions O, Graves 1844; Cayley 1845) Consider R8 ' H2 with a
multiplication given by

(u1, v1)(u2, v2) := (u1u2 − v̄2v1, v2u1 + v1ū2)

(Cayley-Dickson construction). For a more explicit description, consider
{1, e1, . . . , e7} basis of R8, and define the product according to the follow-
ing table:

2



eiej 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e6 e5 e7 e4 −e3 −e1 −1 e2
e7 e7 e3 e5 −e1 e5 −e4 −e2 −1

One can do exactly the same trick as before checking that for α = x0 +
x1e1 + · · ·+x7e7 and ᾱ = x0−x1e1−· · ·−x7e7 it holds αᾱ = x2

0 + · · ·+x2
7

and setting |α| =
√
αᾱ

α−1 = ᾱ

|α|
.

Observe that this product is neither commutative (e1e2 = e4, while e2e1 =
−e4) nor associative ( (e1e2)e3 = e4e3 = −e6, while e1(e2e3) = e1e5 = e6).

So how can we face our question? The answer is “by looking at the spheres”,
and here is where topology comes into play.

2 H -spaces
Definition. An H-space (H after H.Hopf) is a pointed topological space
(X, e) together with a continuous map

µ : X ×X −→ X , µ(x, y) notation= xy

such that e acts as a unit, xe = x = ex for all x ∈ X.

We could have weaken the definition by not letting e be a unit, but letting
X

·e−→ X and X
e·−→ X be homotopic to the identity rel. {e}, or simply

homotopic to the identity. For CW-complexes it can be shown that the three
notions are equivalent.

Examples 2.1 1. Every topological group is an H−space, thus (R,+),
(C,+), (R− 0, ·), GLn(R),... are H−spaces.

2. The division algebra structures described in 1.1 satisfy that the norm of
an element coincides with the euclidean norm on the corresponding Rn,
thus the multiplication restricts to a map

Sn × Sn ↪→ Rn × Rn −→ Sn ⊂ Rn

because in all cases |uv| = |u||v|. Therefore

S0 ⊂ R , S1 ⊂ C , S3 ⊂ H , S7 ⊂ O

are H-spaces. The unit elements are the same as in Rn, since they lie
in its corresponding sphere. Even more, we see that S0 and S1 are in
particular abelian topological groups, S3 is also a topological group (but
non-commutative), but S7 is not, since the operation is not associative.

3



With the same argument we prove

Lemma 2.2 If Rn is a division algebra, then Sn−1 is an H-space.

Proof. We just have to consider the map

µ : Sn−1 × Sn−1 Sn−1

(x, y) xy

|xy|
,

(| · | represents the euclidean norm on Rn) which is continuous and well-defined
because every division algebra is a domain. If e is the unit element of Rn, then
e/|e| ∈ Sn−1 is the unit of the H-space, since

µ

(
x,

e

|e|

)
=

x e
|e|∣∣∣x e
|e|

∣∣∣ = xe

|xe|
= x

This naive lemma is more powerful than it seems, since translates our original
algebraic problem to a topological one. In particular, our machinery on K-
theory allows us immediately to discard all Rn with n > 1 odd (and later on
will give us the full solution using Adams operations):

Proposition 2.3 The even spheres S2k cannot be H-spaces, k > 0.

Proof. Suppose S2k is an H-space with multiplication µ : S2k×S2k −→ S2k and
unit element e. Such a map induces a ring homomorphism in K-theory

µ∗ : K(S2k) = Z[γ]
(γ2) −→

Z[α, β]
(α2, β2) = K(S2k × S2k)

since by Bott periodicity and the product theorem K(S2k × S2k) ' K(S2k) ⊗
K(S2k) ' Z[α]/(α2) ⊗ Z[β]/(β2) ' Z[α, β]/(α2, β2). Let us see how this map
acts: consider the inclusions

i1 : S2k ↪→ S2k × S2k, x 7→ (x, e) and i2 : S2k ↪→ S2k × S2k, x 7→ (e, x).

Note that µ ◦ i1 = Id = µ ◦ i2, so they also induce the identity in K-theory.
But, taking {1, α, β, αβ} an additive basis of K(S2k × S2k), and observing that
i∗1(α) = γ , i∗1(β) = 0, i∗2(α) = 0 , i∗2(β) = α, we determine

µ∗(γ) = α+ β +mαβ

for some m ∈ Z. But this would imply that

0 = µ∗(0) = µ∗(γ2) = µ∗(γ)2 = (α+ β +mαβ)2 = 2αβ,

what cannot be.

4



3 The Hopf invariant
In general, it is quite hard to give not nullhomotopic maps between spheres (in
the end, to compute πi(Sm)). For instance, every map Si −→ S1 is nullhomo-
topic1 for i ≥ 2.

For our purpose, let us take n ≥ 2 even and a map f : S2n−1 −→ Sn that we
will think as an attaching map for X := Sn ∪f D2n, which we can consider as a
CW-complex with 1 0-cell, 1 n-cell and 1 2n-cell,

X0 = ∗ ⊂ Xn = Sn ⊂ X2n = X.

The inclusion of Sn on X and the collapse of the n-skeleton

Sn i
↪→ X

π−→ X/Sn = S2n

induce the long exact sequence of the pair (X,Sn),

K̃1(S2n) K̃1(X) K̃1(Sn)

K̃0(S2n) K̃0(X) K̃0(Sn)

π∗ i∗

π∗ i∗

Since K̃1(S2n) = K̃(S2n+1) = 0 and K̃1(Sn) = K̃(Sn+1) = 0 , by exactness
K̃1(X) = 0, so it produces a short exact sequence

0 −→ K̃(S2n) = Z π∗

−→ K̃(X) i∗−→ K̃(Sn) = Z −→ 0.

Choose x the generator of K̃(S2n) which is the n-fold product of the gen-
erator of K̃(S2); and choose y the generator of K̃(Sn) which is the n/2-fold
product of the generator of K̃(S2). Since i∗ is surjective, let a ∈ K̃(X) be a lift
of y, i∗a = y; and let b := π∗x.

Since K̃(Sn) = Z is a free Z-module (abelian group), the previous sequence
splits,

K̃(S2n)⊕ K̃(Sn) K̃(X)

(α, β) π∗α+ sβ,

'

where s : K̃(Sn) −→ K̃(X) is a section of i∗. Therefore a and b generate K̃(X).

Now, since the ring structure of K̃(Sn) is trivial, in particular y2 = 0, so
a2 ∈ Ker i∗ = Im π∗, and there exists k ∈ Z such that a2 = π∗(kx) = kb.

Lemma 3.1 The previous integer k is well-defined.
1It follows from covering theory. With more generality, πi(X) = 0, i ≥ 2, whenever X has

a contractible universal covering.
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Proof. We need to show that it does not depend on the choice of the lift a of y.
If ā is another lift of y, then ā − a ∈ Ker i∗ = Im π∗, meaning that there is an
integer m ∈ Z such that ā − a = π∗(mx) = mb, so ā = a + mb. We will show
that ā2 = a2 and therefore the aforementioned coefficient will be the same for
both. We have that

ā2 = (a+mb)2 = a2 +m2b2 + 2mab.

Now, b2 = 0 because b2 = (π∗x)2 = π∗x2 = 0. To see that ab = 0, we argue
as follows: i∗(ab) = (i∗a)(i∗b) = (i∗a)(i∗π∗x) = 0, so ab ∈ Ker i∗ = Im π∗ and
ab = rb for some r ∈ Z. Multiplying by a we get rba = aba = a2b = kb2 = 0,
what implies that ab = 0, because ab ∈ Im π∗ which is a free Z-submodule and
in particular free torsion.

Definition. The previous integer k is called theHopf invariant of f : S2n−1 →
Sn, and it is denoted as h(f).

Example 3.2 Consider CP2 with the CW-structure given by attaching one cell
in dimensions 0, 2 and 4,

X0 = ∗ ↪→ X2 = CP1 = S2 ↪→ X4 = CP2.

Consider the attaching map for the 4-cell, η : ∂D4 = S3 −→ S2 (usually
called the Hopf map). It is possible to give an explicit description of such
a map using homogeneous coordinates: think of S3 as the unit sphere in C2,
S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1}. Then the Hopf map is given by

η : S3 ⊂ C2 −→ S2 = CP1 , (z0, z1) 7→ [z0 : z1].

To compute the Hopf invariant of η, we rewrite the previous short exact se-
quence,

0 −→ K̃(S4) = Z π∗

−→ K̃(CP2) i∗−→ K̃(S2) = Z −→ 0.

Now the generators of K̃(S4) and K̃(S2) are α ∗α = x and α, where α = H − 1.
By our later discussion in A.2, we see that K̃(CP2) = Za⊕Za2, where i∗a = α,
and π∗(x) = a2. Therefore h(η) = 1.

The following result relates the Hopf invariant with our problem:

Proposition 3.3 Let n ≥ 2 be even. If Sn−1 has an H-space structure, then
there exists a map f : S2n−1 −→ Sn with Hopf invariant ±1.

Proof. Let us see in first place how to construct such a map from an H-space
structure µ : Sn−1 × Sn−1 −→ Sn−1. View S2n−1 and Sn as

S2n−1 = ∂D2n = ∂(Dn × Dn) = ∂Dn × Dn ∪ Dn × ∂Dn

and
Sn = Sn−1 ∪∂Dn

+q∂Dn
−
Dn+ q Dn−,

respectively. Now define

f : S2n−1 = ∂Dn × Dn ∪ Dn × ∂Dn −→ Sn
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as

f(x, y) :=

|y|µ
(
x, y|y|

)
∈ Dn+, (x, y) ∈ ∂Dn × Dn

|x|µ
(
x
|x| , y

)
∈ Dn−, (x, y) ∈ Dn × ∂Dn

Note that this map is well-defined and it is continuous, even when x = 0 or
y = 0, and f coincides with the product µ on Sn−1 × Sn−1.

The goal is to show that h(f) = ±1. For this, let e ∈ Sn−1 be the unit for
the H-space multiplication and as before get X = Sn∪fD2n and a characteristic
map for the 2n-cell viewed as a map of pairs,

χ : (Dn × Dn, ∂(Dn × Dn)) −→ (X,Sn).

We consider now the following diagram,where the horizontal maps are the
product maps:

K̃(X)⊗ K̃(X) K̃(X)

K̃(X,Dn−)⊗ K̃(X,Dn+) K̃(X,Sn)

K̃({e} × Dn, {e} × ∂Dn)⊗ K̃(Dn × {e}, ∂Dn × {e}) K̃(Dn × Dn, ∂(Dn × Dn))

K̃(Sn)⊗ K̃(Sn) K̃(S2n)

µ

'

µ

ϕ

π∗

χ∗ '

'

'

' '

The upper left arrow is isomorphism because the disks are contractible; the
product in the second line has as target K̃(X,Sn) because X/Dn− ∧ X/Dn+ =
X/(Dn− ∪ Dn+) = X/Sn; χ∗ is isomorphism because the quotients are homeo-
morphic; the lowest horizontal map is isomorphism by Bott periodicity; and the
map ϕ is induced by the composite (maps of pairs)

(Dn × {e}, ∂Dn × {e}) ↪→ (Dn × Dn, ∂Dn × Dn) χ−→ (X,Dn+).

(the other factor is similar). Since χ restricts to a homeomorphism from Dn×{e}
onto Dn−, the element a ∈ K̃(X) is mapped to a generator of K̃(S2n), and
therefore the element a ⊗ a in the upper left group maps to a generator in
the lower left group, which we can take to a generator of K̃(X,Sn), and then it
maps to ±b through π∗. By the commutativity of the diagram, a⊗a maps to ±b
through the first horizontal map, so we get that a2 = ±b; that is, h(f) = ±1.

The upshot is that the existence of H-space structures on the spheres (and
therefore division algebra structures on Rn) are conditioned by the existence of
maps f : S2n−1 −→ Sn with Hopf invariant ±1. The following theorem finally
solves our original question, since it points for what values of n there exists such
a map. It was firstly proven by Adams in 1960 using secondary cohomology
operations in singular cohomology, but here we will present a much simpler
proof making use of K-theory and the Adams operations (primary cohomology
operations in K-theory).
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Theorem 3.4 (Adams-Atiyah, 1964) Let n ≥ 2 be even. If there exists a
map f : S2n−1 −→ Sn with Hopf invariant ±1, then n = 2, 4, 8.

Proof. Let us write n = 2m, m ∈ N, so f : S4m−1 −→ S2m, and have Thomas’
notes on hand. As before, denote by i : S2m −→ X and π : X −→ S4m the
inclusion and collapse of the 2m-skeleton in X = S2m ∪f D4m. We showed that
ψk : K̃(S2m) −→ K̃(S2m) is the morphism “multiplication by km” and by the
naturality of the Adams operations we see that the diagram

K̃(X) K̃(S2m)

K̃(X) K̃(S2m)

i∗

ψk ψk=·km

i∗

commutes, what says that ψk(a) = kma + rkb for some rk ∈ Z. Similarly, π
gives rise to

K̃(S4m) K̃(X)

K̃(S4m) K̃(X)

π∗

ψk=·k2m ψk

π∗

implying that ψk(b) = k2mb.
Specializing for k = 2 prime, and using (iv) in Theorem 1 we see that

r2b ≡ 2ma+ r2b = ψ2(a) ≡ a2 = h(f)b = ±b (mod 2),

so r2 must be odd.
In general for k odd, property (iii) ensures that

ψkψ2(a) = ψk+2(a) = ψ2ψk(a).

The first term is

ψkψ2(a) = ψk(2ma+ rkb) = km2ma+ (2mrk + k2mr2)b,

and the third one

ψ2ψk(a) = ψ2(kma+ rkb) = 2mkma+ (kmr2 + 22mrk)b

and since K̃(X) = Za ⊕ Zb is a free Z-module, the coefficients must coincide.
For b this yields

2m(2m − 1)rk = (km − 1)kmr2.

This ensures that 2m divides (km− 1)(kmr2), but (kmr2) is odd, thus it divides
km − 1. Specializing again for k = 3 we conclude by the following arithmetic
lemma.

Lemma 3.5 If 2m divides 3m − 1, then m = 1, 2, 4.
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Proof. We start by writing m = 2`k, with k odd.
Claim. The highest power of 2 dividing 3m − 1 is{

2, ` = 0,
2`+2, ` > 0.

.

Observe that with the claim we conclude, since it implies that m ≤ ` + 2,
so 2` ≤ 2`k = m ≤ ` + 2, so it has to be ` ≤ 2 and finally m ≤ 4. Now the
four possible cases are checked individually: for m = 1, 2 divides 2; for m = 2,
4 divides 8; for m = 3, 8 does not divide 26; and for m = 4, 16 divides 80.

Proof of the claim. We argue by induction on `:
` = 0 (ie, m = k odd): Since 3 ≡ −1 (mod 4), 3k ≡ (−1)k = −1 (mod 4)

and then 3k − 1 ≡ −2 ≡ 2 (mod 4). Therefore the highest power of 2 dividing
3k − 1 is 2.

` = 1 (ie, m = 2k, k = 2p+1 odd): Write 3m−1 = 32k−1 = (3k−1)(3k+1).
Now note that since 32 ≡ 1 (mod 8), then 32p ≡ 1 (mod 8), and multiplying
by 3 we get 3k ≡ 3 (mod 8) and finally 3k + 1 ≡ 4 (mod 8). We see that, as
before, the highest power of 2 diving 3k − 1 is 2, and now the highest power
dividing 3k + 1 is 4; so 8 = 21+2 is the highest power of 2 dividing 32k − 1.

General case: Suppose that the claim is true form = 2`k, ` ≥ 1 and therefore
m even. Then for 2`+1k = 2m we get 32m − 1 = (3m − 1)(3m + 1). By the
induction hypothesis, the highest power of 2 dividing the first factor is 2`+2, and
since m is even, 3 ≡ −1 (mod 4) so 3m ≡ 1 (mod 4) and 3m + 1 ≡ 2 (mod 4);
what says that the highest power of 2 for the second factor is 2, what ends the
proof.

The latter theorem, together with 3.3, 2.2 and 2.3 conclude that

Rn is a division algebra ⇐⇒ n = 1, 2, 4, 8

provided that at least we find one structure on each of these cases (namely,
R,C,H and O).

4 Parallelizable spheres
The strong result showed in the previous section also allows us to answer a
question coming naturally from differential geometry:

Definition. A smooth manifold M is said to be parallelizable if there exists
a global basis of vector fields, ie, if X(M) is a free C∞(M)-module of rank
m = dimM .

Here X(M) denotes the C∞(M)-module of vector fields over M . Obviously,
this is equivalent to say that the tangent bundle TM is trivializable, that is,
diffeomorphic to M × Rm.

Question. What spheres are parallerizable?

This time we will not defer the solution for so long. We have:

Lemma 4.1 If Sn−1 is parallelizable, then it is an H-space.
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Proof. Let {X1, . . . Xn−1} be a global basis of vector fields on Sn−1. Then
at every point p ∈ Sn−1 we have a basis {(X1)p, . . . (Xn−1)p} of TpSn−1, and
considering the sphere as submanifold of Rn, we see that {p, (X1)p, . . . (Xn−1)p}
is basis of Rn, because p is orthogonal to TpSn−1. Now we can apply the Gram-
Schmidt orthonormalization process to that basis to obtain an orthonormal basis
of Rn for every p ∈ Sn−1. Since the process is described in terms of polynomials
and non-zero divisions, we obtain an orthonormal basis of vector fields on the
sphere (that we will still denote {X1, . . . Xn−1}).

Let e1 = (1, 0, . . . , 0) ∈ Sn−1 and consider

{e1, e2 := (X1)e1 , . . . en := (Xn−1)e1}

an orthonormal basis of Rn. For every point p ∈ Sn−1, let φp be the unique
isometry2 which takes the basis {e1, . . . , en} to {p, (X1)p, . . . (Xn−1)p} . Now
consider the map

µ : Sn−1 × Sn−1 Sn−1

(x, y) µ(x, y) := φx(y),

which is continuous because φx is a linear isomorphism for all x ∈ Sn−1 and the
vector fields are continuous. This maps defines the desired H-space structure
with neutral element e1, since µ(x, e1) = φx(e1) = x and µ(e1, x) = φe1(x) =
Id(x) = x.

Because of this, we had better only look at n = 1, 2, 4, 8. It happens that
there are global basis of vector fields for these spheres. For that one can either
explicitly give such vector fields or with more elegance show that if Rn is a
division algebra then Sn−1 is parallelizable, using a similar argument to 4.1.

Now we know all spheres which have a global basis of vector fields, it is
natural to ask: in the rest of spheres, how many linearly independent vector
fields can we get at most? The answer is a mixture of linear algebra, which
constructs them; andK-theory, which ensures that there are not more (although
the proof is beyond the scope of these notes).

Theorem 4.2 (Hurwitz, Radon, Eckmann; Adams 1961) Let m = 2`k,
with k odd, and ` = 4b+ c, 0 ≤ c ≤ 3, and let ρ(m) := 8b+ 2c be the Hurwitz-
Radon number.

On Sm−1, there exist ρ(m) − 1 linearly independent vector fields (Hurwitz,
Radon, Eckmann) and no more (Adams).

` 0 1 2 3 4 5 6 7
2` 1 2 4 8 16 32 64 128
ρ(m) 1 2 4 8 9 10 12 16

We gather all results we proved in these notes in the following

Corollary 4.3 The following statements occur only for n = 1, 2, 4, 8:

1. Rn is a division algebra.
2Observe that in particular φp ∈ SO(Rn): the construction gives rise to a continuous map

Sn−1 −→ O(Rn), p 7→ φp, and we conclude because Sn−1 is connected and φe1 = Id is in the
connected component SO(Rn).
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2. Sn−1 is an H-space.

3. Sn−1 is parallelizable.

4. π2n−1(Sn) contains an element with Hopf invariant ±1 (although not for
n = 1 with the definition we gave).

A The K-theory of CPn

Let us make explicit the K-theory of the complex projective space. In Lecture 6
Matthijs showed, using the long exact sequence and induction, that the reduced
K-theory of CPn is given by

K̃0(CPn) = Zn , K̃1(CPn) = 0,

because CPn has only cells in even dimensions. To be able to show the ring
structure of K(CPn) we need to develop higher unreduced K-theory groups.

Let X be a topological space and denote by X+ := X q +, where + is a
disjoint basepoint.

Definition. The higher unreduced K-theory groups of X are

Kn(X) := K̃n(X+).

For a pair of spaces (X,A) define

Kn(X,A) := K̃n(X,A).

Note that this definition is consistent with our previous theory:

Lemma A.1 K0(X) = K(X), K1(X) = K̃1(X), and in particular the six-term
long exact sequence is valid for unreduced groups.

Proof. For n = 0 we have

K0(X) = K̃0(X+) = K̃(X+) = Ker(K(X+) −→ K(+)) = K(X),

and for n = 1

K1(X) = K̃1(X+) = K̃(SX+) = K̃(SX ∨ S1) = K̃(SX)⊕ K̃(S1) = K̃1(X)

Theorem A.2 K(CPn) = Z[x]/(xn+1), where x = L−1 and L is the canonical
line bundle over CPn.

Proof. Using the computations of above and A.1, we see that the long exact
sequence of the pair (CPn,CPn−1) produces a short exact sequence

0 −→ K(CPn,CPn−1) π∗

−→ K(CPn) i∗−→ K(CPn−1) −→ 0,

where as usual i : CPn−1 ↪→ CPn and π : CPn −→ CPn/CPn−1 = S2n.

Claim. (L− 1)n generates Ker i∗ for all n.

11



With this claim we can prove the theorem by induction: for n = 1, CP1 = S2

and the statement was a consequence of the product theorem. For the general
case, suppose K(CPn−1) = Z[x]/(xn). Since it is free as Z-module, the previous
short exact sequence splits, so it says that

{1, (L− 1), . . . , (L− 1)n−1, (L− 1)n}

generates K(CPn), by the induction hypothesis, the claim and the fact that
Ker i∗ = Im π∗ ' K(CPn,CPn−1). But the claim for n+1 says that (L−1)n+1 =
0 in K(CPn), so the result follows.

Proof of the claim. Note that the complex projective space can be viewed as
the orbit space S2n+1/S1, where we consider S2n+1 ⊂ R2n+2 ' Cn+1, and S1

acts under multiplication. Now set

S2n−1 = ∂D2n+2 = ∂(D2
0×· · ·×D2

n) =
⋃
i

(D2
0×· · ·×∂D2

i×· · ·×D2
n) =

⋃
i

∂iD2n+2.

Call Ci to the orbit space of the factor ∂iD2n+2, and observe that is homeo-
morphic to D2

0×· · ·× D̂2
i ×· · ·×D2

n, since the action identifies all points in ∂D2
i .

Thus CPn = ∪iCi where each Ci is homeomorphic to D2n. We again decompose
C0 as C0 = ∪i∂iC0, with ∂iC0 = D2

1 × · · · × ∂D2
i × · · · ×D2

n. Now the inclusions
of pairs

(D2
i , ∂D2

i ) ↪→ (C0, ∂iC0) ↪→ (CPn, Ci)
induce the following commutative diagram:

K(D2
1, ∂D2

1)⊗ · · · ⊗K(D2
n, ∂D2

n)

K(C0, ∂1C0)⊗ · · · ⊗K(C0, ∂nC0) K(C0, ∂C0)

K(CPn, C1)⊗ · · · ⊗K(CPn, Cn) K(CPn, C1 ∪ · · · ∪ Cn) K(CPn,CPn−1)

K(CPn)⊗ · · · ⊗K(CPn) K(CPn)

''

'

'

'

π∗

Here all maps from the first column to the second one are n-fold products.
The upper diagonal map is isomorphism3, the upper map in the second column
is too because the inclusion C0 −→ CPn induces a homeomorphism C0/∂C0 =
CPn/(C0∪· · ·∪Cn). Since CPn sits in the last n coordinates of Cn+1, it is disjoint
from C0, inducing a homotopy equivalence CPn/CPn−1 −→ CPn/(C1∪· · ·∪Cn),
and therefore the isomorphism in K-theory.

Now: take xi ∈ K(CPn, Ci) a lift of L−1 ∈ K(CPn). Such lift exists because
the pair (CPn, Ci) induces a short exact sequence

0 −→ K(CPn, ∗) −→ K(CPn) dim−→ K(∗) = Z −→ 0,
3Here we use that there is a relative product Ki(X,A)⊗Kj(Y,B) −→ Ki+j(X × Y,X ×

B∪A×Y (similar to the situation in cohomology with respect the cup product), defined as the
external product K̃(Σi(X/A)⊗ K̃(Σj(Y/B) −→ K̃(Σi+j(X/A∧Y/B) using the identification
X/A ∧ Y/B = (X × Y )/(X ×B ∪A× Y )
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since Ci is contractible. As L − 1 is in the kernel of the map dim, it comes
from an element xi in K(CPn, Ci). Now we just have to check that it maps to
a generator of K(D2

i , ∂D2
i ), because in such a case by the commutativity of the

diagram the product x1 · · ·xn generates K(CPn, C1 ∪ · · · ∪ Cn), and therefore
(L−1)n generates the image of the lower right map, which is Ker i∗ by exactness,
and we are done.

To see that xi maps to a generator of K(D2
i , ∂D2

i ), for i = 1, . . . , n consider
the commutative diagram

(D2
i , ∂D2

i ) (CPn, Ci)

(CP1, C̄i)

where CP1 is obtained from D2
0×D2

1 similarly, and C̄1 = (D2
0×∂D2

1)/S1 (quotient
by the action). Such a diagram induces the following one in K-theory:

K(D2
i , ∂D2

i ) K(CPn, Ci)

K(CP1, C̄i)

Z = K(CP1, ∗) K(CPn, ∗)

K(CP1) K(CPn)

'
'

'

If xi ∈ K(CPn, ∗) ' K(CPn, Ci) is a lift of L−1 ∈ K(CPn), by the commutativ-
ity of the lower square we see that xi maps to a generator of K(CP1, ∗), because
the lower horizontal map sends L− 1 to a generator. Since the whole diagram
commutes the upper horizontal arrow maps xi ∈ K(CPn, Ci) to a generator of
K(D2

i , ∂D2
i ), as we wanted.
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PROBLEMS

1. Show that every real division algebra R of odd dimension has dimension
1 using only linear algebra. (Hint: Every endomorphism of a odd dimen-
sional real vector space has a real eigenvalue).

2. Show that Rn, with n ≥ 3 odd, is not a division algebra over R by con-
sidering how the determinant of the linear map “multiplication by a”,
0 6= a ∈ Rn, varies as a moves along a path in Rn − 0 joining two anti-
podal points. (Hint: Use the mapping degree.)

3. Show that R and C are the only finite-dimensional division algebras over
R which are commutative and have identity as follows: for n ≥ 2, suppose
that Rn is a division algebra. Then use the map f : Sn−1 −→ Sn−1,
f(x) = x ·x/|x ·x| to produce a homeomorphism between RPn−1 and Sn−1

(which only occurs for n = 2). Then conclude that every 2-dimensional
commutative division algebra with identity is isomorphic to C. (Hint: Use
Brower’s Invariance of Domain Theorem for topological manifolds).

4. Show that if R is a associative division ring, then its center Z(R) = {a ∈
R : ar = ra ∀r ∈ R} is a field. Compute Z(H).

5. Let A be a ring. A A-module M is simple when it only has trivial sub-
modules.
Show that if M,N are A-modules, every non-zero A-module homomorph-
ism f : M −→ N is isomorphism, and EndA(M) is a division ring.

6. Show that if the Pappus’ theorem holds in P2(R), where R is a division
algebra, then R is commutative.

7. Show that the Hopf invariant does not depend on the homotopy class of
the map and defines a group homomorphism h : π2n−1(Sn) −→ Z. (Hint:
For the second part, given f, g ∈ π2n−1(Sn) get Xf+g and Xf∨g, where the
latter space arises by attaching two 2n-cells via f and g through the map
f ∨ g : S2n−1 ∨ S2n−1 −→ S2n−1, and relate the two short exact sequences
obtained from Xf+g and Xf∨g with the morphism induced in K-theory
by q : Xf+g −→ Xf∨g which collapses the equatorial disk of the 2n-cell of
Xf+g).

8. If (X, e) is an H-space, show that π1(X, e) is abelian.

9. Let X be a CW-complex and e ∈ X a 0-cell. Show that it is equivalent:

(a) (X, e) is an H-space.
(b) There exists a map µ : X × X −→ X such that the maps µ(−, e) :

X −→ X and µ(e,−) : X −→ X are homotopic to the identity rel.
{e}.

(c) There exists a map µ : X × X −→ X such that the maps µ(−, e) :
X −→ X and µ(e,−) : X −→ X are homotopic to the identity.

(Hint: Use the HEP)
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10. If (X, e) is anH-space and CW-complex with multiplication µ : X×X −→
X as in (b) before, show that by setting (f + g)(x) = µ(f(x), g(x)) we
obtain the same the group operation on πn(X, e) .

11. Give explicit families of vector fields which form basis of X(S1) and X(S3).
(Hint: Use the multiplicative structure of C and H.)

Hand-in exercises: 1, 4, 7, 8, 11.
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