K-THEORY SEMINAR. LECTURE 8

JORGE BECERRA GARRIDO

16th April 2018

Proving algebra through topology

Even kindergarten kids (...) know that division is possible in \mathbb{R} . By division we understand that there is a multiplication and for every non-zero element $x \in \mathbb{R}$ there is another element $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. Once at school one discovers the plane \mathbb{R}^2 , the space \mathbb{R}^3, \ldots and wonders if for these spaces one can also define a multiplication with the property that every non-zero element has an inverse. To ease the problem, instead of asking for a field structure (as in \mathbb{R}), we will not be so coarse and we will just ask for a division ring structure, that is, a field but multiplication might be neither commutative nor associative. Moreover, we also want to multiply by scalars $\lambda \in \mathbb{R}$ componentwise, giving rise to a division algebra over \mathbb{R} instead.

Question. For what $n \in \mathbb{N}$ is there a division algebra structure on \mathbb{R}^n ?

For \mathbb{R}^2 , the answer seems easy: in the moment that we want to solve the equation $x^2+1=0$ we come up with a solution i which is not a real number, so we start to consider pairs x+yi, ie, pairs (x,y) on \mathbb{R}^2 with a multiplication

$$(x_1, y_1)(x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1).$$

Observe that the neutral element is still (1,0). For z=(x,y), setting $\bar{z}:=(x,-y)$ one soon discovers that $z\bar{z}=(x^2+y^2,0)$ and therefore

$$(x,y)^{-1} = \left(\frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2}\right)$$

whenever $(x, y) \neq (0, 0)$. By a simple computation one even realizes that such operation is associative and commutative, endowing \mathbb{R}^2 with a field structure, and working it out a bit more one sees that it is even algebraically closed.

Ok, small victory. What happens with \mathbb{R}^3 ? The Irish mathematician W.R. Hamilton (1805–1865) tried to answer this question. Although he did not succeed, on his way he came up with a division algebra structure on \mathbb{R}^4 , which is called *quaternions* (denoted with \mathbb{H} after him). Later J.T. Gravess and A. Cayley discovered independently a division algebra structure on \mathbb{R}^8 , called *octonions* \mathbb{O} .

Are there more? Throughout these notes we will try to solve this question translating this algebraic problem to a topological problem. F.G. FROBENIUS showed in 1877 that \mathbb{R} , \mathbb{C} and \mathbb{H} are the only finite-dimensional associative division algebras over \mathbb{R} with unit, with a algebraic proof. What happens if we drop the associativity? In 1964 F. Adams and M. Atiyah gave a very short proof of this fact using topological K-theory and the Adams operations. This was one major victory for the K-theory.

1 Division algebras

Let us make rigorous the description we did before:

Warning. In these notes all rings will be considered with (left and right) unit and not necessarily either associative or commutative. In other words, a ring $(R, +, \cdot)$ will be a set with two operations such that (R, +) is an abelian group and (R, \cdot) is a magma with unit, such that the product is distributive with respect to the sum.

Definition. A division ring R is a non-zero ring R without zero divisors except 0 and where every non-zero element is invertible. If R is also a k-algebra, we say that R is a division algebra (over k).

Observe that if the ring is associative, then the condition of not having zero divisors except 0 follows from the second property. It is clear that an associative, commutative division ring is a field. With more effort, one can show that every finite division ring is a field (Wedderburn's Theorem).

Something surprising about division rings is that geometry makes possible check if the associative or commutative property hold: if we consider $\mathbb{P}^2 := (R^3 - 0)/\sim$,, where R is a division ring, then we have:

R is commutative \iff Pappus' theorem holds in \mathbb{P}^2 ,

R is associative \iff Desargues' theorem holds in \mathbb{P}^2 .

Examples 1.1 1. \mathbb{R} and $\mathbb{C} \simeq \mathbb{R}^2$ are fields, thus division algebras.

2. (Quaternions \mathbb{H} , Hamilton 1843) Consider \mathbb{R}^4 with basis $\{1, i, j, k\}$ and define a product "·" determined by the identities

$$i^2 = j^2 = k^2 = -1$$
 , $ijk = -1$

and with unit 1 (so in general it is dropped). Every element can be expressed as u = x + yi + zj + tk, and if the conjugate of u is $\bar{u} := x - yi - jz - tk$, a simple computation yields $u\bar{u} = x^2 + y^2 + z^2 + t^2$, thus by calling $|u| := +\sqrt{u\bar{u}}$ we obtain that

$$u^{-1} = \frac{\bar{u}}{|u|^2} = \frac{x - yi - zk - tk}{x^2 + y^2 + z^2 + t^2}$$

for all non-zero u, then it is a division algebra. \mathbb{R}^4 endowed with this product is called the **quaternions** and it is denoted by \mathbb{H} . It is easy to check that the product is associative, but observe that it is not commutative: ij = k, ji = -k.

3. (Octonions \mathbb{O} , Graves 1844; Cayley 1845) Consider $\mathbb{R}^8 \simeq \mathbb{H}^2$ with a multiplication given by

$$(u_1, v_1)(u_2, v_2) := (u_1u_2 - \bar{v}_2v_1, v_2u_1 + v_1\bar{u}_2)$$

(Cayley-Dickson construction). For a more explicit description, consider $\{1, e_1, \ldots, e_7\}$ basis of \mathbb{R}^8 , and define the product according to the following table:

$e_i e_j$	1	e_1	e_2	e_3	e_4	e_5	e_6	e_7
1	1	e_1	e_2	e_3	e_4	e_5	e_6	e_7
e_1	e_1	-1	e_4	e_7	$-e_2$	e_6	$-e_5$	$-e_3$
e_2	e_2	$-e_4$	-1	e_5	e_1	$-e_3$	e_7	$-e_6$
e_3	e_3	$-e_7$	$-e_5$	-1	e_6	e_2	$-e_4$	e_1
e_4	e_4	e_2	$-e_1$	$-e_6$	-1	e_7	e_3	$-e_5$
				$-e_2$		-1		
				e_4				
e_7	e_7	e_3	e_5	$-e_1$	e_5	$-e_4$	$-e_2$	-1

One can do exactly the same trick as before checking that for $\alpha = x_0 + x_1e_1 + \cdots + x_7e_7$ and $\bar{\alpha} = x_0 - x_1e_1 - \cdots - x_7e_7$ it holds $\alpha\bar{\alpha} = x_0^2 + \cdots + x_7^2$ and setting $|\alpha| = \sqrt{\alpha\bar{\alpha}}$

$$\alpha^{-1} = \frac{\bar{\alpha}}{|\alpha|}.$$

Observe that this product is neither commutative $(e_1e_2 = e_4, \text{ while } e_2e_1 = -e_4)$ nor associative $(e_1e_2)e_3 = e_4e_3 = -e_6$, while $e_1(e_2e_3) = e_1e_5 = e_6$.

So how can we face our question? The answer is "by looking at the spheres", and here is where topology comes into play.

2 H-spaces

Definition. An H-space (H after H.HOPF) is a pointed topological space (X, e) together with a continuous map

$$\mu: X \times X \longrightarrow X \qquad , \qquad \mu(x,y) \stackrel{\text{notation}}{=} xy$$

such that e acts as a unit, xe = x = ex for all $x \in X$.

We could have weaken the definition by not letting e be a unit, but letting $X \xrightarrow{\cdot e} X$ and $X \xrightarrow{e\cdot} X$ be homotopic to the identity rel. $\{e\}$, or simply homotopic to the identity. For CW-complexes it can be shown that the three notions are equivalent.

Examples 2.1 1. Every topological group is an H-space, thus $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, $(\mathbb{R} - 0, \cdot)$, $GL_n(\mathbb{R})$,... are H-spaces.

2. The division algebra structures described in 1.1 satisfy that the norm of an element coincides with the euclidean norm on the corresponding \mathbb{R}^n , thus the multiplication restricts to a map

$$\mathbb{S}^n \times \mathbb{S}^n \hookrightarrow \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{S}^n \subset \mathbb{R}^n$$

because in all cases |uv| = |u||v|. Therefore

$$\mathbb{S}^0 \subset \mathbb{R}$$
 , $\mathbb{S}^1 \subset \mathbb{C}$, $\mathbb{S}^3 \subset \mathbb{H}$, $\mathbb{S}^7 \subset \mathbb{O}$

are H-spaces. The unit elements are the same as in \mathbb{R}^n , since they lie in its corresponding sphere. Even more, we see that \mathbb{S}^0 and \mathbb{S}^1 are in particular abelian topological groups, \mathbb{S}^3 is also a topological group (but non-commutative), but \mathbb{S}^7 is not, since the operation is not associative.

With the same argument we prove

Lemma 2.2 If \mathbb{R}^n is a division algebra, then \mathbb{S}^{n-1} is an H-space.

Proof. We just have to consider the map

 $(|\cdot| \text{ represents the euclidean norm on } \mathbb{R}^n)$ which is continuous and well-defined because every division algebra is a domain. If e is the unit element of \mathbb{R}^n , then $e/|e| \in \mathbb{S}^{n-1}$ is the unit of the H-space, since

$$\mu\left(x,\frac{e}{|e|}\right) = \frac{x\frac{e}{|e|}}{\left|x\frac{e}{|e|}\right|} = \frac{xe}{|xe|} = x$$

This naive lemma is more powerful than it seems, since translates our original algebraic problem to a topological one. In particular, our machinery on K-theory allows us immediately to discard all \mathbb{R}^n with n>1 odd (and later on will give us the full solution using Adams operations):

Proposition 2.3 The even spheres \mathbb{S}^{2k} cannot be H-spaces, k > 0.

Proof. Suppose \mathbb{S}^{2k} is an H-space with multiplication $\mu: \mathbb{S}^{2k} \times \mathbb{S}^{2k} \longrightarrow \mathbb{S}^{2k}$ and unit element e. Such a map induces a ring homomorphism in K-theory

$$\mu^*: K(\mathbb{S}^{2k}) = \frac{\mathbb{Z}[\gamma]}{(\gamma^2)} \longrightarrow \frac{\mathbb{Z}[\alpha, \beta]}{(\alpha^2, \beta^2)} = K(\mathbb{S}^{2k} \times \mathbb{S}^{2k})$$

since by Bott periodicity and the product theorem $K(\mathbb{S}^{2k} \times \mathbb{S}^{2k}) \simeq K(\mathbb{S}^{2k}) \otimes K(\mathbb{S}^{2k}) \simeq \mathbb{Z}[\alpha]/(\alpha^2) \otimes \mathbb{Z}[\beta]/(\beta^2) \simeq \mathbb{Z}[\alpha,\beta]/(\alpha^2,\beta^2)$. Let us see how this map acts: consider the inclusions

$$i_1: \mathbb{S}^{2k} \hookrightarrow \mathbb{S}^{2k} \times \mathbb{S}^{2k}, x \mapsto (x, e)$$
 and $i_2: \mathbb{S}^{2k} \hookrightarrow \mathbb{S}^{2k} \times \mathbb{S}^{2k}, x \mapsto (e, x)$.

Note that $\mu \circ i_1 = \mathrm{Id} = \mu \circ i_2$, so they also induce the identity in K-theory. But, taking $\{1,\alpha,\beta,\alpha\beta\}$ an additive basis of $K(\mathbb{S}^{2k}\times\mathbb{S}^{2k})$, and observing that $i_1^*(\alpha) = \gamma$, $i_1^*(\beta) = 0$, $i_2^*(\alpha) = 0$, $i_2^*(\beta) = \alpha$, we determine

$$\mu^*(\gamma) = \alpha + \beta + m\alpha\beta$$

for some $m \in \mathbb{Z}$. But this would imply that

$$0 = \mu^*(0) = \mu^*(\gamma^2) = \mu^*(\gamma)^2 = (\alpha + \beta + m\alpha\beta)^2 = 2\alpha\beta,$$

what cannot be. \Box

3 The Hopf invariant

In general, it is quite hard to give not nullhomotopic maps between spheres (in the end, to compute $\pi_i(\mathbb{S}^m)$). For instance, every map $\mathbb{S}^i \longrightarrow \mathbb{S}^1$ is nullhomotopic¹ for $i \geq 2$.

For our purpose, let us take $\underline{n \geq 2}$ even and a map $f: \mathbb{S}^{2n-1} \longrightarrow \mathbb{S}^n$ that we will think as an attaching map for $X := \mathbb{S}^n \cup_f \mathbb{D}^{2n}$, which we can consider as a CW-complex with 1 0-cell, 1 n-cell and 1 2n-cell,

$$X_0 = * \subset X_n = \mathbb{S}^n \subset X_{2n} = X.$$

The inclusion of \mathbb{S}^n on X and the collapse of the n-skeleton

$$\mathbb{S}^n \stackrel{i}{\hookrightarrow} X \stackrel{\pi}{\longrightarrow} X/\mathbb{S}^n = \mathbb{S}^{2n}$$

induce the long exact sequence of the pair (X, \mathbb{S}^n) ,

$$\overbrace{ \widetilde{K^{0}}(\mathbb{S}^{2n}) \stackrel{\pi^{*}}{\longrightarrow} \widetilde{K^{1}}(X) \stackrel{i^{*}}{\longrightarrow} \widetilde{K^{1}}(\mathbb{S}^{n}) }_{} }$$

$$\overbrace{ \widetilde{K^{0}}(\mathbb{S}^{2n}) \stackrel{\pi^{*}}{\longrightarrow} \widetilde{K^{0}}(X) \stackrel{i^{*}}{\longrightarrow} \widetilde{K^{0}}(\mathbb{S}^{n}) }_{} }$$

Since $\widetilde{K^1}(\mathbb{S}^{2n})=\widetilde{K}(\mathbb{S}^{2n+1})=0$ and $\widetilde{K^1}(\mathbb{S}^n)=\widetilde{K}(\mathbb{S}^{n+1})=0$, by exactness $\widetilde{K^1}(X)=0$, so it produces a short exact sequence

$$0 \longrightarrow \widetilde{K}(\mathbb{S}^{2n}) = \mathbb{Z} \xrightarrow{\pi^*} \widetilde{K}(X) \xrightarrow{i^*} \widetilde{K}(\mathbb{S}^n) = \mathbb{Z} \longrightarrow 0.$$

Choose x the generator of $\widetilde{K}(\mathbb{S}^{2n})$ which is the n-fold product of the generator of $\widetilde{K}(\mathbb{S}^{2})$; and choose y the generator of $\widetilde{K}(\mathbb{S}^{n})$ which is the n/2-fold product of the generator of $\widetilde{K}(\mathbb{S}^{2})$. Since i^{*} is surjective, let $a \in \widetilde{K}(X)$ be a lift of y, $i^{*}a = y$; and let $b := \pi^{*}x$.

Since $K(\mathbb{S}^n) = \mathbb{Z}$ is a free \mathbb{Z} -module (abelian group), the previous sequence splits,

$$\widetilde{K}(\mathbb{S}^{2n}) \oplus \widetilde{K}(\mathbb{S}^n) \xrightarrow{\simeq} \widetilde{K}(X)$$

$$(\alpha, \beta) \longmapsto \pi^* \alpha + s\beta,$$

where $s:\widetilde{K}(\mathbb{S}^n)\longrightarrow \widetilde{K}(X)$ is a section of i^* . Therefore a and b generate $\widetilde{K}(X)$.

Now, since the ring structure of $\widetilde{K}(\mathbb{S}^n)$ is trivial, in particular $y^2 = 0$, so $a^2 \in \operatorname{Ker} i^* = \operatorname{Im} \pi^*$, and there exists $k \in \mathbb{Z}$ such that $a^2 = \pi^*(kx) = kb$.

Lemma 3.1 The previous integer k is well-defined.

¹It follows from covering theory. With more generality, $\pi_i(X) = 0$, $i \geq 2$, whenever X has a contractible universal covering.

Proof. We need to show that it does not depend on the choice of the lift a of y. If \bar{a} is another lift of y, then $\bar{a} - a \in \operatorname{Ker} i^* = \operatorname{Im} \pi^*$, meaning that there is an integer $m \in \mathbb{Z}$ such that $\bar{a} - a = \pi^*(mx) = mb$, so $\bar{a} = a + mb$. We will show that $\bar{a}^2 = a^2$ and therefore the aforementioned coefficient will be the same for both. We have that

$$\bar{a}^2 = (a+mb)^2 = a^2 + m^2b^2 + 2mab.$$

Now, $b^2=0$ because $b^2=(\pi^*x)^2=\pi^*x^2=0$. To see that ab=0, we argue as follows: $i^*(ab)=(i^*a)(i^*b)=(i^*a)(i^*\pi^*x)=0$, so $ab\in \operatorname{Ker} i^*=\operatorname{Im} \pi^*$ and ab=rb for some $r\in \mathbb{Z}$. Multiplying by a we get $rba=aba=a^2b=kb^2=0$, what implies that ab=0, because $ab\in \operatorname{Im} \pi^*$ which is a free \mathbb{Z} -submodule and in particular free torsion.

Definition. The previous integer k is called the **Hopf invariant** of $f: \mathbb{S}^{2n-1} \to \mathbb{S}^n$, and it is denoted as h(f).

Example 3.2 Consider \mathbb{CP}^2 with the CW-structure given by attaching one cell in dimensions 0, 2 and 4,

$$X_0 = * \hookrightarrow X_2 = \mathbb{CP}^1 = \mathbb{S}^2 \hookrightarrow X_4 = \mathbb{CP}^2.$$

Consider the attaching map for the 4-cell, $\eta: \partial \mathbb{D}^4 = \mathbb{S}^3 \longrightarrow \mathbb{S}^2$ (usually called the **Hopf map**). It is possible to give an explicit description of such a map using homogeneous coordinates: think of \mathbb{S}^3 as the unit sphere in \mathbb{C}^2 , $\mathbb{S}^3 = \{(z_0, z_1) \in \mathbb{C}^2 : |z_0|^2 + |z_1|^2 = 1\}$. Then the Hopf map is given by

$$\eta: \mathbb{S}^3 \subset \mathbb{C}^2 \longrightarrow \mathbb{S}^2 = \mathbb{CP}^1$$
 , $(z_0, z_1) \mapsto [z_0: z_1]$.

To compute the Hopf invariant of η , we rewrite the previous short exact sequence,

$$0 \longrightarrow \widetilde{K}(\mathbb{S}^4) = \mathbb{Z} \xrightarrow{\pi^*} \widetilde{K}(\mathbb{CP}^2) \xrightarrow{i^*} \widetilde{K}(\mathbb{S}^2) = \mathbb{Z} \longrightarrow 0.$$

Now the generators of $\widetilde{K}(\mathbb{S}^4)$ and $\widetilde{K}(\mathbb{S}^2)$ are $\alpha * \alpha = x$ and α , where $\alpha = H - 1$. By our later discussion in A.2, we see that $\widetilde{K}(\mathbb{CP}^2) = \mathbb{Z}a \oplus \mathbb{Z}a^2$, where $i^*a = \alpha$, and $\pi^*(x) = a^2$. Therefore $h(\eta) = 1$.

The following result relates the Hopf invariant with our problem:

Proposition 3.3 Let $n \geq 2$ be even. If \mathbb{S}^{n-1} has an H-space structure, then there exists a map $f: \mathbb{S}^{2n-1} \longrightarrow \mathbb{S}^n$ with Hopf invariant ± 1 .

Proof. Let us see in first place how to construct such a map from an H-space structure $\mu: \mathbb{S}^{n-1} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{S}^{n-1}$. View \mathbb{S}^{2n-1} and \mathbb{S}^n as

$$\mathbb{S}^{2n-1} = \partial \mathbb{D}^{2n} = \partial (\mathbb{D}^n \times \mathbb{D}^n) = \partial \mathbb{D}^n \times \mathbb{D}^n \cup \mathbb{D}^n \times \partial \mathbb{D}^n$$

and

$$\mathbb{S}^n = \mathbb{S}^{n-1} \cup_{\partial \mathbb{D}^n_+ \coprod \partial \mathbb{D}^n_-} \mathbb{D}^n_+ \coprod \mathbb{D}^n_-,$$

respectively. Now define

$$f: \mathbb{S}^{2n-1} = \partial \mathbb{D}^n \times \mathbb{D}^n \cup \mathbb{D}^n \times \partial \mathbb{D}^n \longrightarrow \mathbb{S}^n$$

$$f(x,y) := \begin{cases} |y|\mu\left(x,\frac{y}{|y|}\right) \in \mathbb{D}^n_+, & (x,y) \in \partial \mathbb{D}^n \times \mathbb{D}^n \\ |x|\mu\left(\frac{x}{|x|},y\right) \in \mathbb{D}^n_-, & (x,y) \in \mathbb{D}^n \times \partial \mathbb{D}^n \end{cases}$$

Note that this map is well-defined and it is continuous, even when x = 0 or y = 0, and f coincides with the product μ on $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$.

The goal is to show that $h(f) = \pm 1$. For this, let $e \in \mathbb{S}^{n-1}$ be the unit for the H-space multiplication and as before get $X = \mathbb{S}^n \cup_f \mathbb{D}^{2n}$ and a characteristic map for the 2n-cell viewed as a map of pairs,

$$\chi: (\mathbb{D}^n \times \mathbb{D}^n, \partial(\mathbb{D}^n \times \mathbb{D}^n)) \longrightarrow (X, \mathbb{S}^n).$$

We consider now the following diagram, where the horizontal maps are the product maps:

$$\begin{split} \widetilde{K}(X) \otimes \widetilde{K}(X) & \xrightarrow{\mu} & \widetilde{K}(X) \\ & \uparrow^{\wr l} & \uparrow^{\pi^*} \\ \widetilde{K}(X, \mathbb{D}^n_-) \otimes \widetilde{K}(X, \mathbb{D}^n_+) & \xrightarrow{\mu} & \widetilde{K}(X, \mathbb{S}^n) \\ & \varphi \!\!\!\! \downarrow & \chi^* \!\!\!\!\! \downarrow^{\wr l} \\ \widetilde{K}(\{e\} \times \mathbb{D}^n, \{e\} \times \partial \mathbb{D}^n) \otimes \widetilde{K}(\mathbb{D}^n \times \{e\}, \partial \mathbb{D}^n \times \{e\}) & \xrightarrow{\simeq} & \widetilde{K}(\mathbb{D}^n \times \mathbb{D}^n, \partial (\mathbb{D}^n \times \mathbb{D}^n)) \\ & \uparrow^{\wr l} & \uparrow^{\wr l} \\ \widetilde{K}(\mathbb{S}^n) \otimes \widetilde{K}(\mathbb{S}^n) & \xrightarrow{\simeq} & \widetilde{K}(\mathbb{S}^{2n}) \end{split}$$

The upper left arrow is isomorphism because the disks are contractible; the product in the second line has as target $\widetilde{K}(X,\mathbb{S}^n)$ because $X/\mathbb{D}^n_- \wedge X/\mathbb{D}^n_+ = X/(\mathbb{D}^n_- \cup \mathbb{D}^n_+) = X/\mathbb{S}^n$; χ^* is isomorphism because the quotients are homeomorphic; the lowest horizontal map is isomorphism by Bott periodicity; and the map φ is induced by the composite (maps of pairs)

$$(\mathbb{D}^n \times \{e\}, \partial \mathbb{D}^n \times \{e\}) \hookrightarrow (\mathbb{D}^n \times \mathbb{D}^n, \partial \mathbb{D}^n \times \mathbb{D}^n) \xrightarrow{\chi} (X, \mathbb{D}^n_{\perp}).$$

(the other factor is similar). Since χ restricts to a homeomorphism from $\mathbb{D}^n \times \{e\}$ onto \mathbb{D}^n_- , the element $a \in \widetilde{K}(X)$ is mapped to a generator of $\widetilde{K}(\mathbb{S}^{2n})$, and therefore the element $a \otimes a$ in the upper left group maps to a generator in the lower left group, which we can take to a generator of $\widetilde{K}(X,\mathbb{S}^n)$, and then it maps to $\pm b$ through π^* . By the commutativity of the diagram, $a \otimes a$ maps to $\pm b$ through the first horizontal map, so we get that $a^2 = \pm b$; that is, $h(f) = \pm 1$. \square

The upshot is that the existence of H-space structures on the spheres (and therefore division algebra structures on \mathbb{R}^n) are conditioned by the existence of maps $f: \mathbb{S}^{2n-1} \longrightarrow \mathbb{S}^n$ with Hopf invariant ± 1 . The following theorem finally solves our original question, since it points for what values of n there exists such a map. It was firstly proven by Adams in 1960 using secondary cohomology operations in singular cohomology, but here we will present a much simpler proof making use of K-theory and the Adams operations (primary cohomology operations in K-theory).

Theorem 3.4 (Adams-Atiyah, 1964) Let $n \geq 2$ be even. If there exists a map $f: \mathbb{S}^{2n-1} \longrightarrow \mathbb{S}^n$ with Hopf invariant ± 1 , then n = 2, 4, 8.

Proof. Let us write $n=2m, m\in\mathbb{N}$, so $f:\mathbb{S}^{4m-1}\longrightarrow\mathbb{S}^{2m}$, and have Thomas' notes on hand. As before, denote by $i:\mathbb{S}^{2m}\longrightarrow X$ and $\pi:X\longrightarrow\mathbb{S}^{4m}$ the inclusion and collapse of the 2m-skeleton in $X=\mathbb{S}^{2m}\cup_f\mathbb{D}^{4m}$. We showed that $\psi^k:\widetilde{K}(\mathbb{S}^{2m})\longrightarrow\widetilde{K}(\mathbb{S}^{2m})$ is the morphism "multiplication by k^m " and by the naturality of the Adams operations we see that the diagram

$$\begin{split} \widetilde{K}(X) & \stackrel{i^*}{\longrightarrow} \widetilde{K}(\mathbb{S}^{2m}) \\ \psi^k \Big\downarrow & & \downarrow \psi^k = \cdot k^m \\ \widetilde{K}(X) & \stackrel{i^*}{\longrightarrow} \widetilde{K}(\mathbb{S}^{2m}) \end{split}$$

commutes, what says that $\psi^k(a) = k^m a + r_k b$ for some $r_k \in \mathbb{Z}$. Similarly, π gives rise to

$$\begin{split} \widetilde{K}(\mathbb{S}^{4m}) & \xrightarrow{\pi^*} \widetilde{K}(X) \\ \psi^k = \cdot k^{2m} \Big\downarrow \qquad \qquad \downarrow \psi^k \\ \widetilde{K}(\mathbb{S}^{4m}) & \xrightarrow{\pi^*} \widetilde{K}(X) \end{split}$$

implying that $\psi^k(b) = k^{2m}b$.

Specializing for k=2 prime, and using (iv) in Theorem 1 we see that

$$r_2b \equiv 2^m a + r_2b = \psi^2(a) \equiv a^2 = h(f)b = \pm b \pmod{2},$$

so r_2 must be odd.

In general for k odd, property (iii) ensures that

$$\psi^k \psi^2(a) = \psi^{k+2}(a) = \psi^2 \psi^k(a).$$

The first term is

$$\psi^k \psi^2(a) = \psi^k (2^m a + r_k b) = k^m 2^m a + (2^m r_k + k^{2m} r_2) b,$$

and the third one

$$\psi^2 \psi^k(a) = \psi^2(k^m a + r_k b) = 2^m k^m a + (k^m r_2 + 2^{2m} r_k)b$$

and since $K(X)=\mathbb{Z} a\oplus \mathbb{Z} b$ is a free \mathbb{Z} -module, the coefficients must coincide. For b this yields

$$2^m(2^m - 1)r_k = (k^m - 1)k^m r_2.$$

This ensures that 2^m divides $(k^m - 1)(k^m r_2)$, but $(k^m r_2)$ is odd, thus it divides $k^m - 1$. Specializing again for k = 3 we conclude by the following arithmetic lemma.

Lemma 3.5 If 2^m divides $3^m - 1$, then m = 1, 2, 4.

Proof. We start by writing $m = 2^{\ell}k$, with k odd. Claim. The highest power of 2 dividing $3^m - 1$ is

$$\begin{cases} 2, & \ell = 0, \\ 2^{\ell+2}, & \ell > 0. \end{cases}$$

Observe that with the claim we conclude, since it implies that $m \leq \ell + 2$, so $2^{\ell} \leq 2^{\ell}k = m \leq \ell + 2$, so it has to be $\ell \leq 2$ and finally $m \leq 4$. Now the four possible cases are checked individually: for m = 1, 2 divides 2; for m = 2, 4 divides 8; for m = 3, 8 does not divide 26; and for m = 4, 16 divides 80.

Proof of the claim. We argue by induction on ℓ :

 $\ell = 0$ (ie, m = k odd): Since $3 \equiv -1 \pmod{4}$, $3^k \equiv (-1)^k = -1 \pmod{4}$ and then $3^k - 1 \equiv -2 \equiv 2 \pmod{4}$. Therefore the highest power of 2 dividing $3^k - 1$ is 2.

 $\ell=1$ (ie, m=2k, k=2p+1 odd): Write $3^m-1=3^{2k}-1=(3^k-1)(3^k+1)$. Now note that since $3^2\equiv 1\pmod 8$, then $3^{2p}\equiv 1\pmod 8$, and multiplying by 3 we get $3^k\equiv 3\pmod 8$ and finally $3^k+1\equiv 4\pmod 8$. We see that, as before, the highest power of 2 diving 3^k-1 is 2, and now the highest power dividing 3^k+1 is 4; so $8=2^{1+2}$ is the highest power of 2 dividing $3^{2k}-1$.

General case: Suppose that the claim is true for $m=2^{\ell}k, \ell \geq 1$ and therefore m even. Then for $2^{\ell+1}k=2m$ we get $3^{2m}-1=(3^m-1)(3^m+1)$. By the induction hypothesis, the highest power of 2 dividing the first factor is $2^{\ell+2}$, and since m is even, $3\equiv -1\pmod 4$ so $3^m\equiv 1\pmod 4$ and $3^m+1\equiv 2\pmod 4$; what says that the highest power of 2 for the second factor is 2, what ends the proof.

The latter theorem, together with 3.3, 2.2 and 2.3 conclude that

$$\mathbb{R}^n$$
 is a division algebra $\iff n = 1, 2, 4, 8$

provided that at least we find one structure on each of these cases (namely, $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}).

4 Parallelizable spheres

The strong result showed in the previous section also allows us to answer a question coming naturally from differential geometry:

Definition. A smooth manifold M is said to be **parallelizable** if there exists a global basis of vector fields, ie, if $\mathfrak{X}(M)$ is a free $\mathcal{C}^{\infty}(M)$ -module of rank $m = \dim M$.

Here $\mathfrak{X}(M)$ denotes the $\mathcal{C}^{\infty}(M)$ -module of vector fields over M. Obviously, this is equivalent to say that the tangent bundle TM is trivializable, that is, diffeomorphic to $M \times \mathbb{R}^m$.

Question. What spheres are parallerizable?

This time we will not defer the solution for so long. We have:

Lemma 4.1 If \mathbb{S}^{n-1} is parallelizable, then it is an H-space.

Proof. Let $\{X_1, \ldots X_{n-1}\}$ be a global basis of vector fields on \mathbb{S}^{n-1} . Then at every point $p \in \mathbb{S}^{n-1}$ we have a basis $\{(X_1)_p, \ldots (X_{n-1})_p\}$ of $T_p\mathbb{S}^{n-1}$, and considering the sphere as submanifold of \mathbb{R}^n , we see that $\{p, (X_1)_p, \ldots (X_{n-1})_p\}$ is basis of \mathbb{R}^n , because p is orthogonal to $T_p\mathbb{S}^{n-1}$. Now we can apply the Gram-Schmidt orthonormalization process to that basis to obtain an orthonormal basis of \mathbb{R}^n for every $p \in \mathbb{S}^{n-1}$. Since the process is described in terms of polynomials and non-zero divisions, we obtain an orthonormal basis of vector fields on the sphere (that we will still denote $\{X_1, \ldots X_{n-1}\}$).

Let $e_1 = (1, 0, \dots, 0) \in \mathbb{S}^{n-1}$ and consider

$$\{e_1, e_2 := (X_1)_{e_1}, \dots e_n := (X_{n-1})_{e_1}\}$$

an orthonormal basis of \mathbb{R}^n . For every point $p \in \mathbb{S}^{n-1}$, let ϕ_p be the unique isometry² which takes the basis $\{e_1, \ldots, e_n\}$ to $\{p, (X_1)_p, \ldots (X_{n-1})_p\}$. Now consider the map

$$\mu: \mathbb{S}^{n-1} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{S}^{n-1}$$
$$(x,y) \longmapsto \mu(x,y) := \phi_x(y),$$

which is continuous because ϕ_x is a linear isomorphism for all $x \in \mathbb{S}^{n-1}$ and the vector fields are continuous. This maps defines the desired H-space structure with neutral element e_1 , since $\mu(x, e_1) = \phi_x(e_1) = x$ and $\mu(e_1, x) = \phi_{e_1}(x) = \mathrm{Id}(x) = x$.

Because of this, we had better only look at n = 1, 2, 4, 8. It happens that there are global basis of vector fields for these spheres. For that one can either explicitly give such vector fields or with more elegance show that if \mathbb{R}^n is a division algebra then \mathbb{S}^{n-1} is parallelizable, using a similar argument to 4.1.

Now we know all spheres which have a global basis of vector fields, it is natural to ask: in the rest of spheres, how many linearly independent vector fields can we get at most? The answer is a mixture of linear algebra, which constructs them; and K-theory, which ensures that there are not more (although the proof is beyond the scope of these notes).

Theorem 4.2 (Hurwitz, Radon, Eckmann; Adams 1961) Let $m = 2^{\ell}k$, with k odd, and $\ell = 4b + c$, $0 \le c \le 3$, and let $\rho(m) := 8b + 2^{c}$ be the Hurwitz-Radon number.

On \mathbb{S}^{m-1} , there exist $\rho(m)-1$ linearly independent vector fields (Hurwitz, Radon, Eckmann) and no more (Adams).

We gather all results we proved in these notes in the following

Corollary 4.3 The following statements occur only for n = 1, 2, 4, 8:

1. \mathbb{R}^n is a division algebra.

Observe that in particular $\phi_p \in SO(\mathbb{R}^n)$: the construction gives rise to a continuous map $\mathbb{S}^{n-1} \longrightarrow O(\mathbb{R}^n)$, $p \mapsto \phi_p$, and we conclude because \mathbb{S}^{n-1} is connected and $\phi_{e_1} = \mathrm{Id}$ is in the connected component $SO(\mathbb{R}^n)$.

- 2. \mathbb{S}^{n-1} is an H-space.
- 3. \mathbb{S}^{n-1} is parallelizable.
- 4. $\pi_{2n-1}(\mathbb{S}^n)$ contains an element with Hopf invariant ± 1 (although not for n=1 with the definition we gave).

A The K-theory of \mathbb{CP}^n

Let us make explicit the K-theory of the complex projective space. In Lecture 6 Matthijs showed, using the long exact sequence and induction, that the reduced K-theory of \mathbb{CP}^n is given by

$$\widetilde{K}^0(\mathbb{CP}^n) = \mathbb{Z}^n$$
 , $\widetilde{K}^1(\mathbb{CP}^n) = 0$,

because \mathbb{CP}^n has only cells in even dimensions. To be able to show the ring structure of $K(\mathbb{CP}^n)$ we need to develop higher unreduced K-theory groups.

Let X be a topological space and denote by $X_+ := X \coprod +$, where + is a disjoint basepoint.

Definition. The higher unreduced K-theory groups of X are

$$K^n(X) := \widetilde{K^n}(X_+).$$

For a pair of spaces (X, A) define

$$K^n(X,A) := \widetilde{K^n}(X,A).$$

Note that this definition is consistent with our previous theory:

Lemma A.1 $K^0(X) = K(X)$, $K^1(X) = \widetilde{K}^1(X)$, and in particular the six-term long exact sequence is valid for unreduced groups.

Proof. For n = 0 we have

$$K^0(X) = \widetilde{K}^0(X_+) = \widetilde{K}(X_+) = \operatorname{Ker}(K(X_+) \longrightarrow K(+)) = K(X),$$

and for n=1

$$K^1(X) = \widetilde{K}^1(X_+) = \widetilde{K}(SX_+) = \widetilde{K}(SX \vee \mathbb{S}^1) = \widetilde{K}(SX) \oplus \widetilde{K}(\mathbb{S}^1) = \widetilde{K}^1(X)$$

Theorem A.2 $K(\mathbb{CP}^n) = \mathbb{Z}[x]/(x^{n+1})$, where x = L-1 and L is the canonical line bundle over \mathbb{CP}^n .

Proof. Using the computations of above and A.1, we see that the long exact sequence of the pair $(\mathbb{CP}^n, \mathbb{CP}^{n-1})$ produces a short exact sequence

$$0 \longrightarrow K(\mathbb{CP}^n,\mathbb{CP}^{n-1}) \xrightarrow{\pi^*} K(\mathbb{CP}^n) \xrightarrow{i^*} K(\mathbb{CP}^{n-1}) \longrightarrow 0,$$

where as usual $i: \mathbb{CP}^{n-1} \hookrightarrow \mathbb{CP}^n$ and $\pi: \mathbb{CP}^n \longrightarrow \mathbb{CP}^n/\mathbb{CP}^{n-1} = \mathbb{S}^{2n}$.

Claim. $(L-1)^n$ generates Ker i^* for all n.

With this claim we can prove the theorem by induction: for n = 1, $\mathbb{CP}^1 = \mathbb{S}^2$ and the statement was a consequence of the product theorem. For the general case, suppose $K(\mathbb{CP}^{n-1}) = \mathbb{Z}[x]/(x^n)$. Since it is free as \mathbb{Z} -module, the previous short exact sequence splits, so it says that

$$\{1, (L-1), \dots, (L-1)^{n-1}, (L-1)^n\}$$

generates $K(\mathbb{CP}^n)$, by the induction hypothesis, the claim and the fact that $\operatorname{Ker} i^* = \operatorname{Im} \pi^* \simeq K(\mathbb{CP}^n, \mathbb{CP}^{n-1})$. But the claim for n+1 says that $(L-1)^{n+1} = 0$ in $K(\mathbb{CP}^n)$, so the result follows.

Proof of the claim. Note that the complex projective space can be viewed as the orbit space $\mathbb{S}^{2n+1}/\mathbb{S}^1$, where we consider $\mathbb{S}^{2n+1}\subset \mathbb{R}^{2n+2}\simeq \mathbb{C}^{n+1}$, and \mathbb{S}^1 acts under multiplication. Now set

$$\mathbb{S}^{2n-1} = \partial \mathbb{D}^{2n+2} = \partial (\mathbb{D}_0^2 \times \cdots \times \mathbb{D}_n^2) = \bigcup_i (\mathbb{D}_0^2 \times \cdots \times \partial \mathbb{D}_i^2 \times \cdots \times \mathbb{D}_n^2) = \bigcup_i \partial_i \mathbb{D}^{2n+2}.$$

Call C_i to the orbit space of the factor $\partial_i \mathbb{D}^{2n+2}$, and observe that is homeomorphic to $\mathbb{D}^2_0 \times \cdots \times \widehat{\mathbb{D}}^2_i \times \cdots \times \mathbb{D}^2_n$, since the action identifies all points in $\partial \mathbb{D}^2_i$. Thus $\mathbb{CP}^n = \bigcup_i C_i$ where each C_i is homeomorphic to \mathbb{D}^{2n} . We again decompose C_0 as $C_0 = \bigcup_i \partial_i C_0$, with $\partial_i C_0 = \mathbb{D}^2_1 \times \cdots \times \partial \mathbb{D}^2_i \times \cdots \times \mathbb{D}^2_n$. Now the inclusions of pairs

$$(\mathbb{D}_i^2, \partial \mathbb{D}_i^2) \hookrightarrow (C_0, \partial_i C_0) \hookrightarrow (\mathbb{CP}^n, C_i)$$

induce the following commutative diagram:

$$K(\mathbb{D}_{1}^{2},\partial\mathbb{D}_{1}^{2})\otimes\cdots\otimes K(\mathbb{D}_{n}^{2},\partial\mathbb{D}_{n}^{2})$$

$$\uparrow^{\wr} \qquad \qquad \stackrel{\simeq}{\longrightarrow} K(C_{0},\partial_{1}C_{0})$$

$$\uparrow \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$K(\mathbb{CP}^{n},C_{1})\otimes\cdots\otimes K(\mathbb{CP}^{n},C_{n}) \longrightarrow K(\mathbb{CP}^{n},C_{1}\cup\cdots\cup C_{n}) \stackrel{\simeq}{\longrightarrow} K(\mathbb{CP}^{n},\mathbb{CP}^{n-1})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K(\mathbb{CP}^{n})\otimes\cdots\otimes K(\mathbb{CP}^{n}) \longrightarrow K(\mathbb{CP}^{n})$$

Here all maps from the first column to the second one are n-fold products. The upper diagonal map is isomorphism³, the upper map in the second column is too because the inclusion $C_0 \to \mathbb{CP}^n$ induces a homeomorphism $C_0/\partial C_0 = \mathbb{CP}^n/(C_0 \cup \cdots \cup C_n)$. Since \mathbb{CP}^n sits in the last n coordinates of \mathbb{C}^{n+1} , it is disjoint from C_0 , inducing a homotopy equivalence $\mathbb{CP}^n/\mathbb{CP}^{n-1} \to \mathbb{CP}^n/(C_1 \cup \cdots \cup C_n)$, and therefore the isomorphism in K-theory.

Now: take $x_i \in K(\mathbb{CP}^n, C_i)$ a lift of $L-1 \in K(\mathbb{CP}^n)$. Such lift exists because the pair (\mathbb{CP}^n, C_i) induces a short exact sequence

$$0 \longrightarrow K(\mathbb{CP}^n, *) \longrightarrow K(\mathbb{CP}^n) \stackrel{\mathrm{dim}}{\longrightarrow} K(*) = \mathbb{Z} \longrightarrow 0,$$

³Here we use that there is a relative product $K^i(X,A)\otimes K^j(Y,B)\longrightarrow K^{i+j}(X\times Y,X\times B\cup A\times Y)$ (similar to the situation in cohomology with respect the cup product), defined as the external product $\widetilde{K}(\Sigma^i(X/A)\otimes \widetilde{K}(\Sigma^j(Y/B)\longrightarrow \widetilde{K}(\Sigma^{i+j}(X/A\wedge Y/B)))$ using the identification $X/A\wedge Y/B=(X\times Y)/(X\times B\cup A\times Y)$

since C_i is contractible. As L-1 is in the kernel of the map dim, it comes from an element x_i in $K(\mathbb{CP}^n, C_i)$. Now we just have to check that it maps to a generator of $K(\mathbb{D}^2_i, \partial \mathbb{D}^2_i)$, because in such a case by the commutativity of the diagram the product $x_1 \cdots x_n$ generates $K(\mathbb{CP}^n, C_1 \cup \cdots \cup C_n)$, and therefore $(L-1)^n$ generates the image of the lower right map, which is $\ker i^*$ by exactness, and we are done.

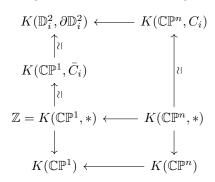
To see that x_i maps to a generator of $K(\mathbb{D}_i^2, \partial \mathbb{D}_i^2)$, for i = 1, ..., n consider the commutative diagram

$$(\mathbb{D}_{i}^{2}, \partial \mathbb{D}_{i}^{2}) \longrightarrow (\mathbb{CP}^{n}, C_{i})$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\mathbb{CP}^{1}, \bar{C}_{i})$$

where \mathbb{CP}^1 is obtained from $\mathbb{D}_0^2 \times \mathbb{D}_1^2$ similarly, and $\bar{C}_1 = (\mathbb{D}_0^2 \times \partial \mathbb{D}_1^2)/\mathbb{S}^1$ (quotient by the action). Such a diagram induces the following one in K-theory:



If $x_i \in K(\mathbb{CP}^n, *) \simeq K(\mathbb{CP}^n, C_i)$ is a lift of $L-1 \in K(\mathbb{CP}^n)$, by the commutativity of the lower square we see that x_i maps to a generator of $K(\mathbb{CP}^1, *)$, because the lower horizontal map sends L-1 to a generator. Since the whole diagram commutes the upper horizontal arrow maps $x_i \in K(\mathbb{CP}^n, C_i)$ to a generator of $K(\mathbb{D}^2, \partial \mathbb{D}^2)$, as we wanted.

References

- [1] BANERJEE, I. The Hopf invariant one problem. http://math.uchicago.edu/~may/REU2016/REUPapers/Banerjee.pdf.
- [2] Blom, T. Lecture notes for the K-Theory seminar. Lecture 3.
- [3] Blom, T. Lecture notes for the K-Theory seminar. Lecture 7.
- [4] HATCHER, A. Algebraic Topology. 2001. https://www.math.cornell.edu/~hatcher/AT/AT.pdf.
- [5] HATCHER, A. Vector Bundles and K-Theory. 2017. https://www.math.cornell.edu/~hatcher/VBKT/VB.pdf.
- [6] Lip, M. K-theory seminar. Lecture 6.

- [7] MILLER, H. Vector Fields on Spheres, etc. https://chromotopy.org/latex/misc/haynes-notes/haynes-notes.pdf.
- [8] NAVARRO GONZÁLEZ, J. A. Notes for a Degree in Mathematics. 2018. http://matematicas.unex.es/~navarro/degree.pdf.
- [9] QUICK, G. Lecture notes for "Advanced Algebraic Topology". https://folk.ntnu.no/gereonq/Math231br.html.
- [10] URHAMMER, E. Real Division Algebras. http://www.math.ku.dk/~moller/undervisning/aktuel/rap2/emil2.pdf.

PROBLEMS

- 1. Show that every real division algebra R of odd dimension has dimension 1 using only linear algebra. (*Hint:* Every endomorphism of a odd dimensional real vector space has a real eigenvalue).
- 2. Show that \mathbb{R}^n , with $n \geq 3$ odd, is not a division algebra over \mathbb{R} by considering how the determinant of the linear map "multiplication by a", $0 \neq a \in \mathbb{R}^n$, varies as a moves along a path in $\mathbb{R}^n 0$ joining two antipodal points. (*Hint:* Use the mapping degree.)
- 3. Show that \mathbb{R} and \mathbb{C} are the only finite-dimensional division algebras over \mathbb{R} which are commutative and have identity as follows: for $n \geq 2$, suppose that \mathbb{R}^n is a division algebra. Then use the map $f: \mathbb{S}^{n-1} \longrightarrow \mathbb{S}^{n-1}$, $f(x) = x \cdot x/|x \cdot x|$ to produce a homeomorphism between \mathbb{RP}^{n-1} and \mathbb{S}^{n-1} (which only occurs for n = 2). Then conclude that every 2-dimensional commutative division algebra with identity is isomorphic to \mathbb{C} . (*Hint:* Use Brower's Invariance of Domain Theorem for topological manifolds).
- 4. Show that if R is a associative division ring, then its center $Z(R) = \{a \in R : ar = ra \ \forall r \in R\}$ is a field. Compute $Z(\mathbb{H})$.
- 5. Let A be a ring. A A-module M is simple when it only has trivial submodules.
 - Show that if M, N are A-modules, every non-zero A-module homomorphism $f: M \longrightarrow N$ is isomorphism, and $\operatorname{End}_A(M)$ is a division ring.
- 6. Show that if the Pappus' theorem holds in $\mathbb{P}^2(R)$, where R is a division algebra, then R is commutative.
- 7. Show that the Hopf invariant does not depend on the homotopy class of the map and defines a group homomorphism $h: \pi_{2n-1}(\mathbb{S}^n) \longrightarrow \mathbb{Z}$. (*Hint:* For the second part, given $f, g \in \pi_{2n-1}(\mathbb{S}^n)$ get X_{f+g} and $X_{f\vee g}$, where the latter space arises by attaching two 2n-cells via f and g through the map $f\vee g: \mathbb{S}^{2n-1}\vee \mathbb{S}^{2n-1}\longrightarrow \mathbb{S}^{2n-1}$, and relate the two short exact sequences obtained from X_{f+g} and $X_{f\vee g}$ with the morphism induced in K-theory by $g: X_{f+g} \longrightarrow X_{f\vee g}$ which collapses the equatorial disk of the 2n-cell of X_{f+g}).
- 8. If (X, e) is an H-space, show that $\pi_1(X, e)$ is abelian.
- 9. Let X be a CW-complex and $e \in X$ a 0-cell. Show that it is equivalent:
 - (a) (X, e) is an H-space.
 - (b) There exists a map $\mu: X \times X \longrightarrow X$ such that the maps $\mu(-,e): X \longrightarrow X$ and $\mu(e,-): X \longrightarrow X$ are homotopic to the identity rel. $\{e\}.$
 - (c) There exists a map $\mu: X \times X \longrightarrow X$ such that the maps $\mu(-,e): X \longrightarrow X$ and $\mu(e,-): X \longrightarrow X$ are homotopic to the identity.

(*Hint:* Use the HEP)

- 10. If (X,e) is an H-space and CW-complex with multiplication $\mu: X \times X \longrightarrow X$ as in (b) before, show that by setting $(f+g)(x) = \mu(f(x),g(x))$ we obtain the same the group operation on $\pi_n(X,e)$.
- 11. Give explicit families of vector fields which form basis of $\mathfrak{X}(\mathbb{S}^1)$ and $\mathfrak{X}(\mathbb{S}^3)$. (*Hint:* Use the multiplicative structure of \mathbb{C} and \mathbb{H} .)

Hand-in exercises: 1, 4, 7, 8, 11.