
K-THEORY SEMINAR. LECTURE 4

JORGE BECERRA GARRIDO

6th March 2018

In this lecture we will introduce the external product and state the Funda-
mental Product theorem. We will analyse its immediate consequences and we
will start its proof, which Luka will continue next week.

Recall that for a compact, Hausdorff topological space X its (complex) K-
theory is given by the Grothendieck group of isomorphism classes of (complex)
vector bundles, K(X) := K(Vect*

C(X)). Its real K-theory is the same con-
struction but with real vector bundles, KO(X) := K(Vect*

R(X)), and both are
commutative rings (with unit). For convenience we also defined the reduced
K-theory as

K̃(X) := K(X)/Z , K̃O(X) := K(X)/Z

where Z is viewed as subring via the canonical injection

Z ↪→ K(X) , n 7→ n,

which also endows K(X) with a natural structure of Z-algebra. We also recall
that we have a split short exact sequence

0 −→ Z −→ K(X) −→ K̃(X) −→ 0

(and similar with KO) and therefore we have splittings (as abelian groups)

K(X) ' K̃(X)⊕ Z , KO(X) ' K̃O(X)⊕ Z.

Lastly, keep also in mind that the Grothendieck group construction defines a
functor

K(−) : CHop −→ CRing

from the category of compact, Hausdorff topological spaces whose arrows are
homotopy classes of continuous maps, to the category of commutative rings
(with unit).

1 The External Product
We will firstly set up some algebraic tools: let R be a commutative ring and let
A,B be two R-algebras. In particular, they are R-modules and we can perform
its tensor product module A⊗R B. However, this tensor product has a natural
structure of R-algebra: the product is given by
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A⊗R B ×A⊗R B A⊗R B
(a⊗ b , a′ ⊗ b′) aa′ ⊗ bb′

and the map R −→ A ⊗R B, r 7→ r ⊗ 1 = 1 ⊗ r is a ring homomorphism, thus
A⊗R B becomes a R-algebra. In particular,

Proposition 1.1 Let A,B,C be R-algebras. Then there is an R-algebra iso-
morphism

HomR−alg(A⊗R B,C) HomR−alg(A,C)×HomR−alg(B,C)

φ (φ1, φ2)

'

where φ1(a) := φ(a⊗ 1) and φ2(b) := φ(1⊗ b).

Proof. It is easy (and tedious) to check that both morphisms are R-algebra
homomorphisms. The inverse of this map is the one which assigns to a pair
(φ1, φ2) the morphism

A⊗R B C

a⊗ b φ1(a)φ2(b).

Clearly both morphisms are inverse of one another.

Definition. Let X,Y be compact, Hausdorff topological spaces, and consider
their product space with projections p1 : X × Y −→ X, p2 : X × Y −→ Y . The
external product is the unique Z-algebra homomorphism

µ : K(X)⊗K(Y ) −→ K(X × Y )

which corresponds with the pair (p∗1, p∗2) given by the previous isomorphism,
where

p∗1 : K(X × Y ) −→ K(X) , p∗2 : K(X × Y ) −→ K(Y ).

Explicitly, µ(a ⊗ b) := p∗1(a)p∗2(b) (where the last product refers to the tensor
product in K(X × Y )).

Example 1.2 If E −→ X is a vector bundle over X, and 1 = Y × C is the
trivial line bundle over Y , then we have that µ(E ⊗ 1) ' p∗1(E), because the
pullback of the trivial line bundle over Y through p2 is precisely the trivial line
bundle over X × Y .

2 The Fundamental Product Theorem
Lemma 2.1 Let Ef , Eg be vector bundles over Sk coming from clutching func-
tions f, g : Sk−1 −→ GLn(C). Denote fg : Sk−1 −→ GLn(C), (fg)(x) :=
f(x)g(x). Then it holds

Efg ⊕ n ' Ef ⊕ Eg.
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Proof. By exercise sheet 2 we have that the vector bundle Ef ⊕ Eg can be
constructed with the clutching function

f ⊕ g : Sk−1 −→ GL2n(C) , (f ⊕ g)(x) :=
(
f(x) 0

0 g(x)

)
.

For the same reason Efg ⊕ n comes from the clutching function

(fg ⊕ Id)(x) :=
(
f(x)g(x) 0

0 Id

)
.

Now, since GL2n(C) is path-connected, let σ a path joining the identity matrix
with the matrix 

1
. . .

1
1

. . .
1


which permutes the basis {e1, . . . , en, en+1, . . . , e2n} of C2n to {en+1, . . . , e2n,
e1, . . . , en}. The homotopy

H : GL2n(C)× I −→ GL2n(C) , H(−, t) := (f ⊕ Id)σ(t)(Id⊕ g)σ(t)

satisfies that H(−, 0) = f ⊕ g and H(−, 1) = fg ⊕ Id, so both maps are homo-
topic. We conclude because homotopic clutching functions induce isomorphic
vector bundles.

Now let H be the tautological line bundle over CP1 ' S2,

H = {([v], v) ∈ CP1 × (C2 − 0) : v ∈ C2 − 0}.

In Joost’s talk we already proved that this vector bundle can be constructed by
the clutching function f : S1 −→ GL1(C), f(z) := (z). Since it is a line bundle,
by exercise sheet 2 we have that H ⊗ H = Ef ⊗ Ef ' Eff and applying the
lemma

(H ⊗H)⊕ 1 ' H ⊕H.

This means that in K(S2), denoting “⊗” as “·” and “⊕” as “+” we have the
equation H · H + 1 = 2H, ie, (H − 1)2 = 0. Consider the subalgebra Z[H] ⊂
K(S2), since every polynomial p(x) =

∑k
i=0 aix

i gives rise1 to a vector bundle
(ak ⊗H⊗k)⊕ · · · ⊕ (a1 ⊗H)⊕ a0 . Since (H − 1)2 = 0 in the K-theory of the
sphere, we have a well-defined Z-algebra homomorphism

Z[H]
(H − 1)2 K(S2)

[p(H)] p(H).

i

1Observe that for a vector bundle p : E −→ X, the distributive property implies that
2⊗ E = (1⊕ 1)⊗ E = (1⊗ E)⊕ (1⊗ E) = E ⊕ E so for the vector bundle H of S2 we have
that (ak ⊗H⊗k)⊕ · · · ⊕ (a1 ⊗H)⊕ a0 ' (H⊗k ⊕

ak· · · ⊕H⊗k)⊕ · · · ⊕ (H ⊕
a1· · · ⊕H)⊕ a0 .
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Theorem 2.2 (Fundamental Product) Let X be a compact, Hausdorff to-
pological space. Then the composite

ϕ : K(X)⊗ Z[H]
(H − 1)2

Id⊗i−→ K(X)⊗K(S2) µ−→ K(X × S2)

is a Z-algebra isomorphism.

This is one of the most important results in K-theory. The proof is long and
technical and we will split it in two lectures. Basically it consists in doing several
reductions in the sort of functions one handles. Before starting with the proof
(which we will divide in several lemmas) it is worth regarding its immediate
consequences:

1. K(S2) ' Z[H]
(H − 1)2 .

Proof. Setting X = ∗ the one-point space, since K(∗) ' Z (because every
vector bundle over the one-point space must be trivial) and ∗ × S2 ' S2

we obtain

Z[H]
(H − 1)2 ' Z⊗Z

Z[H]
(H − 1)2

ϕ−→
∼

K(∗ × S2) = K(S2).

2. The external product µ : K(X) ⊗ K(S2) −→ K(X × S2) is a Z-algebra
isomorphism.

Proof. Since the tensor product respects isomorphisms, by 1. we have
that in the composite ϕ of the Product theorem the first arrow Id ⊗ i :
K(X) ⊗ Z[H]

(H−1)2 −→ K(X) ⊗K(S2) is isomorphism. Now the two out of
three property for isomorphisms follows.

3. K̃(S2) ' Z.

Proof. As abelian group (ie, Z-module), Z[H]
(H−1)2 ' 1Z⊕HZ ' Z⊕Z, thus

K̃(S2) = Z⊕Z
Z ' Z. 2

4. (Bott periodicity) K̃(Sn) '
{
Z, n even
0, n odd.

Proof. This was Corollary 35 in Thomas’ lecture notes for the previous
talk, using a split short exact sequence and the key fact that Sn ∧ S2 =
Sn+2.

2Observe that changing the Z-basis to {H − 1, 1}, one has that K̃(S2) ' (H − 1)Z, ie,
K̃(S2) is generated as abelian group by H − 1. But being (H − 1)2 = 0, it says that the
product of any two elements must be null in reduced K-theory. This is the same situation as
in cohomology where H − 1 plays the same role as the generator of H2(S2;Z) with respect to
the cup product.
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3 Generalized clutching functions
In Lecture 2 we constructed vector bundles over k-spheres using the so-called
clutching functions, maps f : Sk−1 −→ GLn(C) which gave rise to a vector
bundle over Sk as the pushout of the following diagram:

{a, b} × ∂Dk × Cn Sk−1 × Cn

{a, b} × Dk × Cn Ef

F

where F{a}×∂Dk×Cn = Id and F{b}×∂Dk×Cn(x, v) = (x, f(x)(v)), or in other
words,

Ef =
Dk+ × Cn

∐
Dk− × Cn

(x, v) ∼ (x, f(x)(v))
for (x, v) ∈ ∂Dn+ × Cn and (x, f(x)(v)) ∈ ∂Dn− × Cn. We want to enlarge this
class of clutching functions to construct vector bundles over X × S2 out of a
vector bundle over a compact Hausdorff space X. This is as follows:

Let p : E −→ X be a vector bundle over X. The identity Id : S1 −→ S1

can be viewed as the 0-dimensional trivial bundle, 0 = S1 × 0 ' S1 −→ S1.
Therefore we have a product bundle3 E × 0 over X × S1,

p× Id : E × S1 −→ X × S1.

Any automorphism of vector bundles f : E × S1 −→ E × S1 induces a vector
bundle over X × S2, arising as the pushout of the diagram

{a, b} × E × ∂D2 E × S1

{a, b} × E × ∂D2 [E, f ]

F

where F{a}×E×∂D2 = Id and F{b}×E×∂D2 = f . Explicitly, this is

[E, f ] =
E × D2

+
∐
E × D2

−
(e, x) ∼ f(e, x)

for (e, x) ∈ E × D2
+ and f(e, x) ∈ E × D2

−

Definition. In the terms of above, we say that the automorphism f is a clutch-
ing function for [E, f ].

Lemma 3.1 Homotopic clutching functions induce isomorphic vector bundles,
that is, if f, g : E × S1 −→ E × S1 are homotopic, then [E, f ] ' [E, g].

Proof. Let H : E × S1 × I −→ E × S1 be a homotopy between f and g, with
H(−, 0) = f and H(−, 1) = g. With this homotopy we can construct the
following vector bundle over X × S2 × I:

F =
E × D2

+ × I
∐
E × D2

− × I
(e, x, t) ∼ (H(e, x, t), t)

3Recall from Lecture 1 that if p : E −→ X, p′ : E′ −→ Y are vector bundles, then
p× p′ : E × E′ −→ X × Y is a vector bundle over the product of the basis.
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for (e, x, t) ∈ E × ∂D2
+ × I and H(e, x, t) ∈ E × ∂D2

− × I. This vector bundle
restricts to [E, f ] and [E, g] on X × S2 × {0} and X × S2 × {1} respectively.
Since X × S2 is compact and Hausdorff it is paracompact and applying lemma
33 of Bjarne’s notes we are in business.

Exercise 3.2 Show that [E, f ]⊕ [E′, g] ' [E ⊕ E′, f ⊕ g].

Examples 3.3 1. If p : E −→ X is a vector bundle and we consider Id :
E × S1 −→ E × S1, then [E, Id] is the pullback of E via the projection
p1 : X×S2 −→ X, since [E, Id] = E×S2 (immediately from the definition)
and on the other hand

p∗1(E) = (X×S2)×XE = {((x, s), e) ∈ (X×S2)×E : x = p(e)} ' E×S2.

This implies that in the K-theory of X×S2 [E, Id] is the external product
µ(E ⊗ 1), because the pullback of the trivial line bundle over S2 via the
projection p2 : X×S2 −→ S2 is the trivial line bundle over X×S2, ie, the
unit of K(X × S2).

2. Recall from lecture 2 that the tautological line bundle over CP1 ' S2 can
be obtained by a clutching function as

H = D2
∞ × C

∐
D2

0 × C
(x, λ) ∼ (x, f(x)(λ)

for (x, λ) ∈ ∂D2
∞×C and (x, f(x)(λ)) ∈ ∂D2

0×C (where D2
∞ and D2

0 have
boundaries identified with S1 ⊂ C), with f : S1 −→ GL1(C), f(x)(λ) =
xλ. If we take X = ∗ the one-point space and 1 = ∗ × C ' C the trivial
line bundle over ∗, then [1, z·] ' H, where precisely z· is the vector bundle
morphism C × S1 −→ C × S1, (λ, z) 7→ (λz, z). Since for line bundles
the tensor product arises from the product of the clutching functions,
then [1, zn·] ' H⊗n

notation= Hn , n ≥ 0. Because of this, we can set
H−1 := [1, z−1] to have H ⊗ H−1 ' 1 the trivial vector bundle over S2,
and the same argument ensures that the isomorphism [1, zn·] ' Hn is true
for all n ∈ Z.

3. For p : E −→ X a vector bundle, if we consider the automorphism z· :
E × S1 −→ E × S1, (e, z) −→ (ezn, z) (here z ∈ S1 ⊂ C and the product
is fiberwise), then we obtain that [E, zn·] ' µ(E ⊗ Hn), n ∈ Z. To see
this, observe that [E, zn·] can be interpreted as the tensor product of the
identity Id : E × S1 −→ E × S1 and the automorphism zn· in the trivial
line bundle over X × S1, giving rise to our first automorphism,

Id⊗ zn· : (E × S1)⊗ 1 ' E × S1 −→ E × S1 ' (E × S1)⊗ 1.

Therefore we obtain

[E, zn·] ' [E, Id⊗ zn·] ' µ(E ⊗ [1, zn·]) ' µ(E ⊗Hn).

Exercise 3.4 Generalize the previous example to show that [E, znf ] ' [E, f ]⊗
Ĥn, n ∈ Z, where Ĥn = p∗2(Hn) is the pullback through p2 : X × S2 −→ S2.
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We already have all the ingredients we need to develop the proof. Below
we have outlined the steps we will go through to finally show that ϕ : K(X)⊗
Z[H]/(H − 1)2 −→ K(X × S2) is isomorphism. These steps actually will let us
work with hypothesis which will get easier and easier:

1. Every vector bundle over X × S2 is isomorphic to one of the form [E, f ].

2. Every vector bundle [E, f ] is isomorphic to [E, `] for ` a clutching function
of the form `(x, z) :=

∑k
n=−k an(x)zn.

3. Since such a ` as before is ` = z−kq for a polynomial clutching function q,
by exercise 3.4 [E, `] ' [E, q]⊗ Ĥ−k.

4. For a degree n polynomial clutching function q, [E, q] ⊕ [n ⊗ E, Id] '
[n+ 1⊗ E, a(x)z + b(x)].

5. For every vector bundle [E, a(x)z+b(x)], there is a splitting E ' E+⊕E−
such that [E, a(x)z + b(x)] ' [E+, Id]⊕ [E−, z·].

6. Show that ϕ is surjective (easy) and injective (hard).

4 Proof of the Product Theorem. Part I
Proposition 4.1 For every vector bundle E′ −→ X × S2 there exists a vector
bundle E over X and a clutching function f : E × S1 −→ E × S1 such that
E′ ' [E, f ].

Proof. Recall from lecture 2 that we can represent points in CP1 as ratios z =
z0/z1 ∈ C ∪ {∞} = S2 (the Riemann sphere, or the one-point compactification
of C). Denote again D0 the set of points on the south hemisphere (ie, |z| ≤ 1)
and D∞the points in the north hemisphere (ie, |z−1| ≤ 1), so S2 = D0 ∪ D∞.
Denote α = 0 or ∞, and consider the inclusions

iα : X × Dα ↪→ X × S2 , i1 : X × {1} ↪→ X × S2.

Set Eα := i∗α(E′) the restriction of E′ to the subspace X × Dα, and let E :=
i∗1(E′) the restriction to X × {1}. Since Dα is contractible (to {1}), we have
that the retraction r : X × Dα −→ X × {1} is a homotopy equivalence, thus
Id : X × Dα −→ X × Dα is homotopic to the composite

X × Dα
r−→ X × {1} i

↪→ X × Dα.

Since homotopic maps induce the same pullbacks, Id∗(Eα) = Eα is isomorphic
to (i ◦ r)∗(Eα) = r∗i∗(Eα) = r∗(E) ' E × Dα. So we get isomorphisms

h0 : E0
∼−→ E × D0 , h∞ : E∞

∼−→ E × D∞.

Now setting
f := h0h

−1
∞ |E×S1 : E × S1 ∼−→ E × S1

we obtain the wanted clutching function, and the vector bundle [E, f ] is iso-
morphic to E′ by construction.
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Definition. We will call Laurent polynomial to a clutching function of the
form

`(x, z) :=
k∑

n=−k
an(x)zn

where an : E −→ E are linear maps fiberwise, which we will call endomorph-
isms of E

Note that these maps an does not need to be isomorphisms of vector bundles.
However, the linear combination `(x, z) :=

∑k
n=−k an(x)zn must be because the

class of clutching functions we are dealing with is precisely the automorphisms
of the vector bundle E × S1.

Our next goal (or better, reduction) is to show that every vector bundle
arises using a Laurent polynomial as clutching function.

Proposition 4.2 Every vector bundle [E, f ] is isomorphic to [E, `] for some
Laurent polynomial `. Moreover, homotopic Laurent polynomials through clutch-
ing functions are homotopic by a Laurent polynomial clutching function homo-
topy L (x, z, t) =

∑
n an(x, t)zn.

Before the proof we need a getaway to the analysis world. Suppose that
given a continuous function f : X × S1 −→ C we want to approximate it by
a polynomial expression of the form `(x, z) :=

∑
n≤|N | an(x)zn , where an :

X −→ C is continuous. Firstly rewrite `(x, eiθ) :=
∑
n≤|N | an(x)einθ. A first

(and as we will find out right) guess one has is to take the coefficients an as the
Fourier coefficients of f ,

an(x) := 1
2π

∫ 2π

0
f(x, eiθ)e−inθdθ.

Define
u(x, r, θ) :=

∑
n∈Z

an(x)r|n|einθ , r > 0.

For r < 1, this series converges absolute and uniformly. Indeed, since X is
compact, so is X × S1, thus |f(x, eiθ)| is bounded and therefore |an(x)| too.
Now just observe that |an(x)r|n|e−inθ| ≤ Mr|n|, and by the Weierstrass M -
test4 one concludes comparing the resulting series with the geometric series.
We want to show that u converges to f as r −→ 1:

Lemma 4.3 u(x, r, θ) −→ f(x, eiθ) uniformly in x and θ as r −→ 1.

Proof. In first place note that

u(x, r, θ) =
∑
n∈Z

an(x)r|n|einθ

=
∑
n∈Z

1
2π

(∫ 2π

0
f(x, eit)eintdt

)
r|n|einθ

4Let (fn) be a sequence of functions. If for all n ∈ N there exists Mn ≥ 0 such that
|fn(z)| ≤Mn for all z, and

∑
Mn <∞, then

∑
fn converges absolute and uniformly.
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=
∑
n∈Z

1
2π

∫ 2π

0
f(x, eit)ein(θ−t)r|n|dt

=
∫ 2π

0

1
2π
∑
n∈Z

f(x, eit)ein(θ−t)r|n|dt

where in the last equality we interchanged the integral and the summation
provided that the series in uniformly convergent (one checks that using again
the Weierstrass M-test). Now define

P (r, ϕ) := 1
2π
∑
n∈Z

r|n|einϕ , 0 ≤ r < 1, ϕ ∈ R,

so that u(x, r, θ) =
∫ 2π

0 P (r, θ − t)f(x, eit)dt. We can make P (x, ϕ) explicit as
follows: set a := reiϕ, b := re−iϕ. Then

P (x, ϕ) = 1
2π

(
1 +

∑
n∈N

rn(einϕ + e−inϕ)
)

= 1
2π

(
1 +

∑
n∈N

(an + bn)
)

= 1
2π

(
1 + a

1− a + b

1− b

)
= 1

2π

(
1

1− a + b

1− b

)
= 1

2π

(
1 + a

1− a + b

1− b

)
= 1

2π

(
1− ab

1 + ab− a− b

)
= 1

2π

(
1− r2

1 + r2 − r(eiϕ + e−iϕ)

)
= 1

2π

(
1− r2

1 + r2 − 2r cosϕ

)
.

Now, note also that
∫ 2π

0 P (r, ϕ)dϕ = 1 : since the series converges uniformly
(again by using the Weierstrass M-test), we can permute the integral with the
summation and integrate term by term, obtaining∫ 2π

0
P (r, ϕ)dϕ =

∑
n∈Z

∫ 2π

0

1
2π r

|n|einϕdϕ

= 1 +
∞∑
n=1

rn
(

1
2π

∫ 2π

0
einϕ + 1

2π

∫ 2π

0
e−inϕ

)
= 1,

because all terms in brackets are null since {einϕ : n ≥ 0} forms an orthonormal
basis of L2[0, 2π]. So we have

|u(x, r, θ)− f(x, eiθ)| =
∣∣∣∣∫ 2π

0
P (r, θ − t)f(x, eit)dt−

∫ 2π

0
P (r, θ − t)f(x, eiθ)dt

∣∣∣∣
≤
∫ 2π

0
P (r, θ − t)|f(x, eit)− f(x, eiθ)|dt,

since P (r, ϕ) is decreasing in ϕ and therefore P (r, ϕ) ≥ P (r, π) = 1−r2

(1+r)2 > 0
for r < 1. Let us now show the uniform convergence: given ε > 0, since f is
continuous in a compact it is uniformly continuous on X × S1, so there exists
δ > 0 such that |f(x, eit)− f(x, eiθ)| ≤ ε for |t− θ| ≤ δ and all x ∈ X. Set

Iδ :=
∫

[θ−δ,θ+δ]
P (r, θ − t)|f(x, eit)− f(x, eiθ)|dt,
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Icδ :=
∫

[θ−δ,θ+δ]c

P (r, θ − t)|f(x, eit)− f(x, eiθ)|dt,

(where the complement is taken on [0, 2π]). On the one hand,

Iδ ≤
∫

[θ−δ,θ+δ]
P (r, θ − t)εdt ≤ ε

∫ 2π

0
P (r, θ − t)dt = ε,

(the second inequality because P > 0). On the other hand, since P is decreas-
ing in ϕ, P (r, θ − t) reaches its maximum on {|θ − t| ≥ δ} at θ − t = δ, so
max[θ−δ,θ+δ]c P (r, θ − t) = P (r, δ), and then

Icδ ≤ P (r, δ)
∫ 2π

0
|f(x, eit)− f(x, eiθ)|dt ≤ P (r, δ)M.

But observe that for fixed ϕ ∈ (0, 2π) , P (r, ϕ) −→ 0 as r −→ 1, so we can take
r close enough to 1 so that Icδ ≤ ε. In conclusion,

|u(x, r, θ)− f(x, eit)| ≤ Iδ + Icδ ≤ 2ε

for all x ∈ X and θ, meaning the uniform convergence of u to f .

Corollary 4.4 If f : X × S1 −→ C is a continuous function, given ε > 0,
there exists a Laurent polynomial function `(x, z) :=

∑
n≤|N | an(x)zn such that

|f(x, z)− `(x, z)| < ε for all (x, z) ∈ X × S1.

Proof. By the lemma, such a u(x, r, θ) converges uniformly to f as r −→ 1. For
r close enough to 1, the sum of finitely many terms of u will give us the desired
bound.

Proof of 4.2 . Consider an inner product on E (since the base is paracompact),
so we also obtain an inner product on E × S1, as both have isomorphic fibers.
Now the set End(E×S1) of endomorphisms of E×S1 is a normed vector space,
endowed with the norm

||α|| := sup
|v|=1

|α(v)|.

Observe that the subspace Aut(E × S1) of clutching functions is an open set
with the topology induced by this norm, as it is the preimage of (0,∞) by the
continuous map

End(E × S1) [0,∞)

α inf
(x,z)∈X×S1

|detα(x, z)|,

where α(x, z) : Ex −→ Ex. With these remarks, all we need to prove then is
that the set of Laurent polynomials is dense in End(E × S1), because then for
any f ∈ End(E × S1), by taking B(f, ε) an open ball, there will be a Laurent
polynomial ` ∈ B(f, ε), and therefore both are homotopic by

Ht := t`+ (1− t)f,

which is contained in B(f, ε) because balls coming from norms are convex.
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Take then f ∈ End(E×S1) and let us show that there is a Laurent polynomial
` with ||f − `|| ≤ ε, for a given ε > 0. Consider {Ui} a cover of X formed
by trivializing open sets, with trivializations hi : p−1(Ui)

∼−→ Ui × Cni . We
can suppose that these hi are isometries fiberwise (we already saw this, by
applying Gram-Schmidt). Let {φi} be a partition of unity subordinated to
the cover. For x ∈ supp φi, the trivializations hi allow us to view f(x, z) as
a matrix, since they give isomorphisms E(x,z) ' Cni fiberwise. If we denote
fkl : supp φi × S1 −→ C the entries of such a matrix, by 4.4 we find Laurent
polynomials `ikl : supp φi × S1 −→ C with ||fkl − `ikl||∞ < ε, and therefore we
can form matrices `i(x, z), for x ∈ supp φi. Therefore, `i approximates f with
the norm, because the entries are uniformly approximated.

Now by setting ` :=
∑
i φi`

i we find the desired Laurent polynomial on
X × S1 which approximates f , since the family {supp φi} is locally finite.

For the last part of the proposition, one uses a similar argument approximat-
ing a homotopy H from `0 to `1 (understood as an automorphism of E×S1×I)
by a Laurent polynomial homotopy L ′(x, z, t), and combining this with linear
homotopies from L ′(−,−, 0) to `0 and from L ′(−,−, 1) to `1 we obtain our
desired homotopy L from `0 to `1.

By this last proposition, we are reduced to Laurent polynomials; or more
precisely, just to polynomials, since for a Laurent polynomial `(x, z) :=∑
n≤|k| an(x)zn we just need to take q := zk` to obtain a polynomial; and

then we have that
[E, `] ' [E, q]⊗ Ĥ−k

by applying 3.4 to ` = z−kq.

Proposition 4.5 If q is a degree n polynomial clutching function, there is a
splitting [E, q] ⊕ [n ⊗ E, Id] ' [n+ 1 ⊗ E, a(x)z + b(x)] for a linear clutching
function a(x)z + b(x).

Proof. The key observation for this proof is that given a set of endomorphisms
{fij : i, j = 1, . . . , n+ 1} of E, we can construct an endomorphism

n+ 1⊗ E ' E ⊕ n+1· · · ⊕ E −→ E ⊕ n+1· · · ⊕ E ' n+ 1⊗ E

by letting fij be a linear map from the i-th summand in the source to the j-th
summand in the target.

Write q(x, z) = an(x)zn + · · ·+ a1(x)z + a0, and define the matrices

A :=



1 −z 0 · · · 0 0
0 1 −z · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −z
an an−1 an−2 · · · a1 a0


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and

B :=



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 q


.

By the previous remark, these two matrices define endomorphisms of n+ 1⊗
E . Let us define a sequence of polynomials qr(z) = qr(z, x) inductively as
follows:

q0(z) := q(z)

q1(z) := q0(z)− q0(0)
z

...

qn(z) := qn−1(z)− qn−1(0)
z

(note that we can divide by z at every step because qr(z) − qr(0) is always
a polynomial of degree greater or equal than 1). It is a straightforward (and
tedious) computation that we can write A as the product

A = (I +N1)B(I +N2)

where I denotes the (n + 1) × (n + 1) identity matrix and N1 and N2 are the
following nilpotent matrices:

N1 =


0 0 0 . . . 0
q1 0 0 . . . 0
q2 0 0 . . . 0
...

...
...

. . .
...

qn 0 . . . 0 0

 , N2 =


0 −z 0 . . . 0
0 0 −z . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 . . . 0 0

 .

Recall from linear algebra that being N1, N2 nilpotent, I + tNi is invertible
(for 0 ≤ t ≤ 1). Now, again by exercise sheet 2 we know that the matrix B
defines a clutching function for the vector bundle

[E, q]⊕ [n⊗ E, Id],

meaning that B is invertible fiberwise (after fixing basis fiberwise), and therefore
so is A. In conclusion, we see that A defines an automorphism of n+ 1⊗E for
each x ∈ S1, thus a clutching function Lnq : (n+ 1⊗E)×S1 −→ (n+ 1⊗E)×S1,
which takes the form Lnq = a(x)z + b(x) by the form of A. From the previous
relation A = (I+N1)B(I+N2) it follows that we can define a homotopy between
A and B,

Ht = (I + tN1)B(I + tN2),
showing that the induced vector bundles are isomorphic,

[E, q]⊕ [n⊗ E, Id] ' [n+ 1⊗ E, a(x)z + b(x)].

To be continued. . . next week.
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