
Notes on Representation Theory*

Jorge Becerra

August 29, 2024

Contents

1 Basics of Representation Theory 3

2 Representation Theory of sl2 4

3 General Results of Representation Theory 10

4 Representations of Finite Groups 13

5 More on Representations of Finite Groups 19

6 Representation theory of Sn 23

7 Intermezzo: Semisimple Lie Algebras 27
7.1 Abstract Root Systems, Cartan Matrices, and Dynkin Diagrams 30
7.2 Classification of Complex Semisimple Lie Algebras . . . . . . 37

8 Representation Theory of Complex Semisimple Lie Alge-
bras 44
8.1 The Representation Ring Rep(g) . . . . . . . . . . . . . . . . 48
8.2 Weyl’s Character Formula, Dimension Formula, and Kostant’s

Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

*PDF version generated by ChatGPT from the web version – use at your own risk!

1

https://sites.google.com/view/becerra/notes/reptheory


These notes on the representation theory of algebras, finite groups and
semisimple Lie algebras were written during the summer of 2024. Sections
1–5 are taken from

� Etingof et al’s lecture notes

The rest of the notes about semisimple Lie algebras, their classification, and
their representation theory is taken from several sources:

� Hazewinkel-Gubareni-Kirichenko’s book,

� these lecture notes by Kiyosi Igusa,

� Samelson’s book,

� Humphrey’s book,

� Fulton-Harris’s book,

� Knapp’s book.
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1 Basics of Representation Theory

Let A be an algebra over some field k (of characteristic zero unless otherwise
stated). A representation of A is a left A-module. A morphism or intertwiner
between representations is an A-module homomorphism.

Example 1.1. The algebra A endowed with the left multiplication A-
module structure is called the (left) regular representation.

Example 1.2. Given two A-modules V1, V2, the direct sum V1 ⊕ V2 has a
canonical A-module structure.

A representation V ̸= 0 is called irreducible or simple if its only subrep-
resentations (aka A-submodules) are 0 and V . It is indecomposable if it is
not isomorphic to the direct sum of two nonzero representations. Obviously,
irreducible implies indecomposable, but in general, the converse is not true.
A representation is called semisimple or completely reducible if it is a direct
sum of simple ones.

Remark 1.3. Note that every finite dimensional representation V of an
algebra contains an irreducible subrepresentation. Indeed, if V is simple,
done. If not, it contains a proper subrepresentation 0 ̸= W ⊊ V , of di-
mension strictly lower (but non-zero). If this is simple, done; else, and the
process finishes by finite dimensionality.

Lemma 1.4 (Schur). Let φ : V → W be a non-zero A-module homomor-
phism between two A-modules (over any field).

1. If V is simple, then φ is injective.

2. If W is simple, then φ is surjective.

3. If V and W are simple, then φ is an isomorphism.

Proof. The proof is straightforward:

1. Since V is simple, its only submodules are {0} and V itself. If φ were
not injective, then its kernel would be a non-zero submodule of V ,
contradicting the simplicity of V . Therefore, φ must be injective.

2. Similarly, if W is simple and φ were not surjective, then the image of
φ would be a proper submodule of W , contradicting the simplicity of
W . Hence, φ is surjective.
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3. If both V and W are simple, then φ is both injective and surjective,
hence an isomorphism.

Corollary 1.5 (Schur for algebraically closed fields). If k is algebraically
closed, any A-module endomorphism φ : V → V of a simple A-module V
must be φ = λ · Id for some λ ∈ k.

Proof. Suppose λ is an eigenvalue of φ. Then φ − λ · Id is an A-module
map. Since k is algebraically closed, λ must be a root of the characteristic
polynomial of φ. Consequently, φ − λ · Id is not an isomorphism because
its determinant is zero. By Schur’s lemma, φ − λ · Id must be zero, so
φ = λ · Id.

Corollary 1.6. If A is commutative over an algebraically closed field, any
simple A-module is 1-dimensional.

Proof. Let V be a simple A-module. Since A is commutative, multiplication
by any a ∈ A is an intertwiner. By the previous corollary, multiplication
by a must be scalar multiplication. Hence, every linear subspace of V is a
submodule. Since V is simple, it must be 1-dimensional.

Example 1.7. For A = k[x], simple k[x]-modules are 1-dimensional (as it is
commutative). Indecomposable k[x]-modules are determined by the Jordan
normal forms. This example also shows that indecomposable does not imply
irreducible even over algebraically closed fields.

Lemma 1.8. Any finite dimensional A-module has a simple submodule (this
does not hold for infinite dimensional modules).

Given algebras A,B, an (A,B)-bimodule is a vector space V which is
a left A-module and a right B-module, and both modules are compatible
in the sense that (av)b = a(vb). If V is an (A,B)-bimodule and W is a
(B,C)-bimodule, then V ⊗B W is a (A,C)-bimodule in a natural way.

2 Representation Theory of sl2

If g is a Lie algebra, by a representation of g we mean a representation of
U(g), its universal enveloping algebra.

We will focus now on the complex Lie algebra

sl2 := {M ∈M2(C) : tr(M) = 0}.
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Clearly this Lie algebra is generated by the matrices

X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
, H :=

(
1 0
0 −1

)
,

and the reader can easily check that they satisfy the relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H, (1)

where [u, v] := uv − vu. Therefore, its universal enveloping algebra U(sl2)
can be described as the quotient of the free C-algebra generated by X, Y ,
and H subject to the relations above.

Given a finite-dimensional U(sl2)-module V , a weight vector of weight
λ ∈ C is a nonzero eigenvector of H with eigenvalue λ. The eigenspace
V [λ] := ker(H − λId) is called a weight space. A weight λ is called a highest
weight if

Re λ ≥ Re λ′

for any other weight λ′. Equivalently, λ is a highest weight vector if Xw = 0.
Note that every finite-dimensional representation W of U(sl2) has a highest
weight vector. Indeed, since W is finite-dimensional and we are working over
C, the operator H has some eigenvector w with Hw = λw. If w ∈ kerX,
we are done; else consider the sequence of vectors (Xnw)n. It is easy to see
from the relations defining U(sl2) that

H(Xnw) = Xn(H + 2n)w = (λ+ 2n)(Xnw),

so we get a sequence of eigenvectors of H with different eigenvalues. This
implies that there must be some n such that Xnw ̸= 0 and Xn+1w = 0, as
W is finite-dimensional. In this case Xnw is the desired element.

It is easy to see from the defining relations of U(sl2) that for every
U(sl2)-module V , we have

X · V [λ] ⊂ V [λ+ 2], Y · V [λ] ⊂ V [λ− 2].

Lemma 2.1. If V is a U(sl2)-module, let λ be a highest weight and v0 ∈ V [λ]
a highest weight vector. Set

vp :=
1

p!
Y pv0, k ≥ p.

Then

Hvp = (λ− 2p)vp, Xvp = (λ− p+ 1)vp−1, Y vp = (p+ 1)vp+1.
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Proof. To prove this, note that

Hvp = H

(
1

p!
Y pv0

)
=

1

p!
H(Y pv0).

Since H commutes with Y , we have

H(Y pv0) = (HY p)v0 = (Y p(H + 2p))v0 = (λ+ 2p)(Y pv0),

so
Hvp = (λ− 2p)vp.

For the second claim, consider

Xvp = X

(
1

p!
Y pv0

)
=

1

p!
X(Y pv0).

Using the commutation relation [X,Y ] = H, we get

X(Y pv0) = (Y pX + [X,Y p])v0 = Y pXv0 + terms involving H.

Since Xv0 = 0 (as v0 is a highest weight vector),

X(Y pv0) = Y pXv0 = (p · Y p−1v0),

so
Xvp = (λ− p+ 1)vp−1.

Finally,

Y vp = Y

(
1

p!
Y pv0

)
=

1

p!
Y p+1v0,

so
Y vp = (p+ 1)vp+1.

Theorem 2.2. For n ≥ 0, let Vn denote a (n+1)-dimensional vector space
with basis (v0, . . . , vn). Define a U(sl2)-module structure on Vn as follows:

ρn(X) =


0 n 0 · · · 0
0 0 n− 1 · · · 0
...

. . .
. . .

. . .
...

0 0
. . .

. . . 1
0 0 · · · 0 0

 ,
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ρn(Y ) =


0 0 · · · 0 0
1 0 · · · 0 0

0 2
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · n 0

 ,

ρn(H) =


n 0 · · · 0 0
0 n− 2 · · · 0 0
...

. . .
. . .

...
...

0 0 · · · −n+ 2 0
0 0 · · · 0 −n

 .

Then

1. These matrices indeed define a U(sl2)-module structure on Vn.

2. Each Vn is simple.

3. The modules Vn are pairwise non-isomorphic.

4. Every finite-dimensional simple U(sl2)-module is isomorphic to one of
the Vn.

Each Vn is called the simple U(sl2)-module with highest weight n.

Proof. (1) Computation: Verify the defining relations of U(sl2) hold for
these matrices.

(2) First a claim: Any highest weight vector of Vn is proportional to v0.
Indeed, such a w must be a scalar multiple of some vi as it is an eigenvector
of H, and in particular of v0 as none of the others belong to kerX. Now to
see that Vn is simple, let V ′ ⊂ Vn be a subrepresentation. Let v′ ∈ V ′ be a
highest weight vector for V ′. Then this element viewed in V is also a highest
weight vector. Since v0 ∈ Vn satisfies these properties, we must have that
v′ and v0 are proportional, thus v0 ∈ V ′. But this means that v1 = Y v0,
v2 =

1
2Y

2v0, etc. all belong to V ′ as well, so V ′ = V .
(3) By dimensions: The dimension of Vn is n + 1. Since the mod-

ules Vn are pairwise non-isomorphic, this implies that Vn are pairwise non-
isomorphic.

(4) If V is a simple U(sl2)-module, let λ be a highest weight and v0 ∈ V [λ]
a highest weight vector. Set vp := 1

p!Y
pv0, k ≥ p, so that the module

structure is as in the Lemma above. If the vp are non-zero, they must be
linearly independent as they have different weights (eigenvalues). Since V
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is finite-dimensional, there must be some n such that vn ̸= 0 and Y vn = 0,
so that Y vk = 0 whenever k > n. Note that

0 = Xvn+1 = (λ− n)vn,

hence λ = n, i.e., V has highest weight n. Therefore, span(v0, . . . , vn) defines
a subrepresentation of V isomorphic to Vn. But since V is simple, they must
be isomorphic.

Corollary 2.3. The irreducible representation Vn with highest weight n is
a direct sum of weight spaces,

Vn = V [−n]⊕ V [−n+ 2]⊕ · · · ⊕ V [n− 2]⊕ V [n],

each of them is one-dimensional.

Remark 2.4. V1 is isomorphic to the standard 2-dimensional representation
of sl2, namely C2. The isomorphism V1

∼= C2 is given by v0 7→ (1, 0) =: z1
and v1 7→ (0, 1) =: z2. Let S

nC2 denote the n-th symmetric power of C2, i.e.,
homogeneous polynomials in the unknowns z1, z2 of total degree n. Then it
is not hard to see that

(H · P ) (z1, z2) = z1
∂P

∂z1
− z2

∂P

∂z2
,

(X · P ) (z1, z2) = z1
∂P

∂z2
,

(Y · P ) (z1, z2) = z2
∂P

∂z1

defines an isomorphism of U(sl2)-modules Vn
∼= SnC2.

Theorem 2.5 (e.g., Kassel V.4.6). Every finite-dimensional U(sl2)-module
is semisimple.

Corollary 2.6. Every finite-dimensional U(sl2)-module is a direct sum of
its weight spaces,

V =
⊕
n∈Z

V [n],

where only finitely many V [n] are non-zero.

Recall that U(sl2) admits a bialgebra structure which is determined by
the condition that elements of sl2 are primitive. As a bialgebra, the tensor
product of representations is again a representation,

x · (v ⊗ w) := ∆(x)(v ⊗ w).
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To determine how the tensor product splits as a sum of simple modules,
let us define an important tool. Given a finite-dimensional U(sl2)-module,
its formal character is the Laurent polynomial

ch(V ) :=
∑
n∈Z

dim(V [n])tn ∈ Z[t, t−1].

Lemma 2.7. The formal character of U(sl2) is additive and multiplicative,

ch(V ⊕W ) = ch(V ) + ch(W ), ch(V ⊗W ) = ch(V )ch(W ).

Proof. The additive formula is immediate. For the multiplicative one, it
suffices to check that the weight decomposition of the tensor product is
given by

(V ⊗W )[k] =
⊕

n+m=k

V [n]⊗W [m].

That this is the case follows because if v ∈ V [n] and w ∈W [m], then

H · (v ⊗ w) = H · v ⊗ w + v ⊗H · w = nv ⊗ w + v ⊗mw = (n+m)v ⊗ w.

This concludes the proof.

Theorem 2.8. Two U(sl2)-modules V and W are isomorphic if and only
if they have the same formal character, ch(V ) = ch(W ).

Proof. The ”only if” direction is clear from the definition, so we only need to
prove the ”if” direction. We proceed by induction on the dimension of V and
W . Notice that the condition ch(V ) = ch(W ) implies that V and W have
the same weight space decomposition and thus have the same dimension.
Let n be the dimension of V and W . The case n = 0 is vacuously true,
so consider n > 0. Let λ be a highest weight of both V and W . Then
by the same argument as in the theorem stating that the Vn’s are the only
simple modules, we have that V contains a subrepresentation V ′ isomorphic
to Vλ and W contains a subrepresentation W ′ isomorphic to Vλ. Consider
an invariant inner product in V and W (it exists essentially because any
representation of sl2 comes from SU(2), which is 1-connected and compact,
so any representation admits a unitary inner product that descends to sl2).
Then decompose

V = V ′ ⊕ (V ′)⊥, W = W ′ ⊕ (W ′)⊥.

Because the inner product is invariant, ⟨x · v1, v2⟩ = ⟨v1, x · v2⟩, the orthog-
onals are also submodules. Additivity of the formal character implies that
ch((V ′)⊥) = ch((W ′)⊥), and since these subspaces have dimension less than
n, we conclude by the induction hypothesis.
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Corollary 2.9 (Clebsch-Gordan formula). The tensor product of two simple
U(sl2)-modules decomposes as

Vn ⊗ Vm
∼=

min(n,m)⊕
i=0

Vn+m−2i
∼= Vn+m ⊕ Vn+m−2 ⊕ · · · ⊕ V|n−m|.

Proof. Just note that

ch(Vn) = t−n + t−n+2 + · · ·+ tn−2 + tn =
tn+2 − t−n

t2 − 1
.

The rest is a computation.

Remark 2.10. We will see later on that the formal character actually de-
fines a ring isomorphism

ch : K(ModU(sl2))
∼=→ Z[t+ t−1],

where Z[t+ t−1] ⊂ Z[t, t−1] is the subring of palindromic Laurent polynomi-
als.

3 General Results of Representation Theory

Unless otherwise stated, A is an algebra over an algebraically closed field.

Theorem 3.1. Let (Vi) be a collection of non-isomorphic finite-dimensional
simple A-modules. If W is a submodule of

V :=
⊕
i

niVi,

then W is isomorphic to ⊕iriVi, with ri ≤ ni. The inclusion W ↪→ V is
given by a direct sum of inclusions riVi ↪→ niVi which are determined by a
ni × ri matrix with linearly independent columns.

Theorem 3.2. (Density) Let V be a finite-dimensional simple A-module.
Then the structure map

ρ : A→ End(V )

is surjective. That is, any endomorphism of V is ”multiplication by” an
element of A.
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An A-module V is of finite length if there is a finite sequence of submod-
ules

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

such that the quotients Vi/Vi−1 are simple A-modules. Such a sequence is
called a Jordan-Hölder series of V , and the quotients Vi/Vi−1 are called
subquotients.

Lemma 3.3. Every finite-dimensional A-module V is of finite length.

Proof. By induction on dim(V ). The base case is clear. Now pick V1 ⊆ V a
simple submodule, and set U := V/V1, which is strictly of lower dimension.
By the induction hypothesis, U has a Jordan-Hölder series of finite length
0 = U0 ⊂ · · · ⊂ Un. If π : V → V/V1 denotes the projection to the quotient,
for i ≥ 2 set Vi := π−1(Ui). Then

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

is a Jordan-Hölder series for V .

We will later see that all Jordan-Hölder series have the same length and
isomorphic subquotients. This is the content of the so-called Jordan-Hölder
theorem.

The Jacobson radical Rad(A) of a finite-dimensional algebra A is the
set of all elements of A which act by 0 in all simple A-modules (and it is a
two-sided ideal). It is not hard to see that Rad(A) is the largest nilpotent
two-sided ideal of A (recall that an ideal I is nilpotent if In = 0 for some
n). Note that left ideals of A are exactly the subrepresentations of the (left)
regular representation, and therefore A/Rad(A) is another A-module. On
the other hand, note that if V is a finite-dimensional representation of A,
then End(V ) is another representation, (a · f)(v) := a · f(v), and if V is
simple, then End(V ) is semisimple, End(V ) ∼= (dim(V ))V .

Theorem 3.4. A finite-dimensional algebra A has finitely many simple A-
modules (Vi, ρi) (up to isomorphism), these are finite-dimensional and there
is an isomorphism of A-modules

⊕iρi : A/Rad(A)
∼=→

⊕
i

End(Vi).

Corollary 3.5. If (Vi) are the simple A-modules (up to isomorphism) of A,
then ∑

i

(dimVi)
2 ≤ dimA.
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Of course, the equality holds when Rad(A) = 0. In this case, we say
that A is semisimple. The following result justifies the name:

Theorem 3.6. Let A be a finite-dimensional algebra. The following are
equivalent:

1. A is a semisimple algebra.

2. Every finite-dimensional A-module is semisimple.

3. The regular representation A is semisimple.

Corollary 3.7 (Converse of Schur’s lemma). Let A be a semisimple algebra.
If V is an A-module such that EndA(V ) = k, then V is simple.

Proof. Let U ⊂ V be an A-submodule. Because A is semisimple, V admits
a splitting V = U ⊕ W as A-modules. Consider the projection inclusion
map V → U → V . If this map is 0, then U = 0; else, it must be a multiple
of the identity by hypothesis and then U = V .

We now introduce characters. IfA is an algebra and V a finite-dimensional
A-module, the character of V is the linear map

χV : A→ k , χV (a) := trV (ρ(a)).

Because the trace of a composition of endomorphisms is independent of the
order, this means that the trace descends to a linear map

χV : A/[A,A]→ k.

Proposition 3.8. Characters of non-isomorphic finite-dimensional sim-
ple A-modules are linearly independent (in A∗). Moreover, if A is finite-
dimensional with simple finite-dimensional A-modules (Vi), then the collec-
tion (χVi) forms a basis for (A/[A,A])∗.

Theorem 3.9 (Jordan-Hölder). All Jordan-Hölder series of an A-module of
finite length (e.g., finite-dimensional) have the same length and isomorphic
subquotients (up to reordering).

That common length is called the length of V .

Theorem 3.10 (Krull-Schmidt). Any A-module of finite length (e.g., finite-
dimensional) of an algebra A can be uniquely decomposed into a direct sum
of indecomposable A-modules, up to isomorphism and ordering.

Theorem 3.11. Let A,B be algebras. If V,W are irreducible representa-
tions of A,B respectively, then V ⊗W is an irreducible representation of
A⊗B. Even more, all irreducible representations of the tensor product are
of this form.
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4 Representations of Finite Groups

Let G be a finite group. A representation G → End(V ) is the same thing
as a k[G]-module V .

Theorem 4.1 (Maschke). The algebra k[G] is semisimple whenever char(k)
does not divide |G|.

Proof. It suffices to check that if V is a k[G]-module and W ⊂ V is a
submodule, then there exists another submodule W ′ ⊂ V such that V =
W⊕W ′. Choose Z as a linear complement ofW in V , so V = W⊕Z as vector
spaces, and let π : V → W be the projection onto W , i.e., π(w, z) = w.
Define

π̄ : V → V, π̄(v) :=
1

|G|
∑
g∈G

g · π(g−1v),

and set W ′ := ker π̄. It is easy to see that π̄|W = Id and π̄(V ) ⊂ W , so
π̄2 = π̄ and π̄ is a projection along W ′, hence V = W ⊕W ′, a priori only as
vector spaces, but also as k[G]-modules because if h ∈ G and y ∈W ′,

π̄ρ(h)y =
1

|G|
∑
g∈G

ρ(g)πρ
(
g−1h

)
y =

1

|G|
∑
ℓ∈G

ρ(hℓ)πρ
(
ℓ−1

)
y = ρ(h)π̄y = 0.

This concludes.

Corollary 4.2. The regular representation of k[G] decomposes as

k[G] ∼=
⊕
i

End(Vi)

where (Vi) are all the simple k[G]-modules, whenever char(k) does not divide
|G|. Alternatively,

k[G] ∼=
⊕
i

(dim(Vi))Vi,

and therefore

|G| =
∑
i

dim(Vi)
2.

Remark 4.3. Actually, the converse of Maschke’s theorem also holds, that
is, k[G] is semisimple if and only if char(k) does not divide |G|.

Counterxample 4.4. If G = Z/p and char(k) = p, then k[G] is not
semisimple, because every simple k[G]-module (which must be 1-dimensional
as k[G] is commutative) has the trivial G-action. Indeed, the generator of
G must act as multiplication by a p-th root of unity in V ∼= k, but in k any
root of unity is the unity because xp − 1 = (x− 1)p in k.
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If V is a representation of k[G] and let χV be its character. Let us denote
also by χV the restriction to G, i.e., χV : G→ V . Because of the properties
of the trace, the character χV is a class function. A class function of G
is a set-theoretical map φ : G → k which is invariant under conjugation,
φ(hgh−1) = φ(g). We put

Fc(G, k) := HomSet(G/conj, k)

for the set of class functions of G. Note that it is a vector space of dimension
|G/conj|.

Proposition 4.5. Characters of simple k[G]-modules form a basis for Fc(G,k),
whenever char(k) does not divide |G|.

Proof. By the proposition before the Jordan-Hölder theorem, it suffices to
check that (A/[A,A])∗ ∼= Fc(G,k), which is readily verified.

Corollary 4.6. Characters determine representations (if char(k) = 0):

V ∼= W ⇐⇒ χV = χW .

Proof. It follows by expanding the characters in terms of irreducible rep-
resentations using the additivity of the characters, the fact that k[G] is
semisimple (i.e., all representations are sums of irreducible ones), and com-
paring coefficients of these expansions (so expansion in terms of basis ele-
ments) in the vector space Fc(G, k).

Let us write G∨ for the set of irreducible representations of G.

Corollary 4.7.
|G∨| = |G/conj|,

that is, there are as many irreducible representations of G as conjugacy
classes in G.

Examples 4.8. In what follows k = C.

1. Finite Abelian Groups: G = Z/n1 ⊕ · · · ⊕ Z/nk.

Since G is abelian, |G∨| = |G|. Because every element of G is invert-
ible, every element of G acts by automorphisms in any G-module. So
in a simple G-module, which must be one-dimensional, we can view it
as

G→ Aut(C) ∼= C×.
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In particular, G∨ has the structure of an abelian group: if ρ, ρ′ ∈
G∨ are irreducible representations, so are (ρρ′)(g) := ρ(g)ρ′(g) and
ρ−1(g) := ρ(g−1) (because all of them are one-dimensional). The group
G∨ is called the dual or character group of G.

Let us start by G = Z/n. An irreducible representation in this case
is the same as a group homomorphism Z/n→ C×. Such a map must
send 1 to an n-th root of unity. So if ρ denotes the representation that
sends 1 to e2πi/n, i.e.,

ρ(m) := e2πim/n,

then (Z/n)∨ = {ρk} ∼= Z/n.
Now we have that for two abelian groups G1 and G2,

(G1 ⊕G2)
∨ ∼= G∨

1 ⊕G∨
2 ,

(basically because direct sum is the coproduct in abelian groups) so
we conclude that for any finite abelian group we have

G∨ ∼= G.

2. The Symmetric Group S3:

In Sn, conjugacy classes are determined by cycle decomposition: two
permutations are conjugate if and only if they have the same number
of cycles of each length. The conjugacy classes are

[(1)] = {1}, [(12)] = {(12), (13), (23)}, [(123)] = {(123), (132)}.

So there are three different irreducible representations. If di is the
dimension of each of them, by the dimension formula we must have

d21 + d22 + d23 = 6 = |S3|,

so two of them must be di = 1 and the third one = 2.

The one-dimensional representations are the trivial representation C+

(i.e., ρ(σ) = Id) and the sign representation ρ(σ) = sign(σ). The 2-
dimensional representation can be visualized as representing the sym-
metries of the equilateral triangle with vertices (1, 2, 3) at the points
(cos 120◦, sin 120◦), (cos 240◦, sin 240◦), (1, 0). For instance,

ρ((12)) =

(
1 0
0 −1

)
, ρ((123)) =

(
cos 120◦ − sin 120◦

sin 120◦ cos 120◦

)
.
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To check that this representation is irreducible, one argues as follows:
consider any subrepresentation V . It must be the span of a subset of
the eigenvectors of ρ((12)), which are the nonzero multiples of (1, 0)
and (0, 1). But V must also be the span of a subset of the eigenvectors
of ρ((123)), which are different vectors. Thus, V must be either 0 or
the original 2-dimensional representation.

3. The Quaternion Group Q8 = {±1,±i,±j,±k}.
TODO.

If V,W are representations of G, then so are V ∗ and V ⊗W :

ρV ∗(g) := (ρV (g)
∗)−1 = (ρV (g)

−1)∗ = ρV (g
−1)∗,

and
ρV⊗W (g) := ρV (g)⊗ ρW (g),

which follows from the usual bialgebra structure on k[G]. It is clear that

χV ∗(g) = χV (g
−1),

and
χV⊗W = χV χW .

Lemma 4.9. Let V be a finite-dimensional complex representation of G.
Then V ∼= V ∗ (as G-modules) if and only if χV (G) ⊂ R.

Proof. We have χV (g) =
∑

i λi, the sum of the eigenvalues of ρ(g) (e.g.,
from the Jordan normal form). These eigenvalues must be roots of unity
because ρ(g)|G| = ρ(g|G|) = ρ(1) = Id. So for complex representations,

χV ∗(g) = χV (g
−1) =

∑
λ−1
i =

∑
λi =

∑
λi = χV (g),

and the claim follows as characters determine representations.

Recall that a Hermitian inner product in a complex vector space is a
complex-valued bilinear form ⟨−,−⟩ which is antilinear in the second slot,
conjugated symmetric, and positive definite.

We now define a Hermitian inner product on the space Fc(G,C) of class
functions. Set

(f1, f2) :=
1

|G|
∑
g∈G

f1(g)f2(g).

Recall that characters of irreducible representations of G form a basis for
Fc(G,C). The following theorem says in particular that this basis is or-
thonormal with respect to the above-defined inner product.
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Theorem 4.10 (Schur Orthogonality Relations). For any complex G-modules
V,W , we have

(χV , χW ) = dimHomG(V,W ).

In particular, if V,W are irreducible,

(χV , χW ) =

{
1, if V ∼= W,

0, otherwise.

Corollary 4.11. A finite-dimensional complex G-module V is simple if and
only if (χV , χV ) = 1.

Proof. The ”only if” part follows from the previous theorem. For the ”if”
part, use the previous theorem and the converse of Schur’s lemma.

Corollary 4.12. Let (Vi) be the set of finite-dimensional simple G-modules
and let W =

⊕
i niVi. Then

ni = (χW , χVi).

Proof.

(χW , χVi) =
∑
j

nj(χVj , χVi) = ni.

Recall that the centralizer C(g) of an element g ∈ G is the set of elements
of the group that commute with g.

Here is another character formula:

Theorem 4.13. Let g, h ∈ G. Then

∑
V ∈G∨

χV (g)χV (h) =

{
|C(g)|, if g is conjugated to h,

0, otherwise.

A complex finite-dimensional representation V of G is unitary if it is
endowed with a G-invariant Hermitian form, i.e., a Hermitian form (−,−)
for which G acts by unitary operators (isometries), i.e., (gv, gw) = (v, w).
Every complex finite-dimensional representation V of a finite group admits
a unitary structure: if B is a positive definite form in V , then

(v, w) :=
∑
g∈G

B(gv, gw)
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is the desired structure. This gives an alternative proof of Maschke’s theo-
rem, as the unitary structure allows us to take the orthogonal complement of
any subspace, and therefore every finite-dimensional G-module is completely
reducible (i.e., semisimple).

If the finite-dimensional G-module V is simple, then a unitary structure
on V is essentially unique, namely any other differs by scaling by a positive
real number. Indeed, if B,B′ are two Hermitian forms in V , both non-
degenerate, consider the composition of antilinear isomorphisms

V
∼=→ V ∗ ∼=← V,

where each of the maps is the polarity, i.e., v 7→ B(v,−). The composition
is then a G-module map T : V → V , which satisfies B(v, w) = B′(Tv,w).
By Schur’s lemma, T = λ · Id and since both forms are positive definite, the
only option is that λ > 0.

Let V be a finite-dimensional simple G-module and let (v1, . . . , vn) be
an orthonormal basis with respect to the (essentially unique) G-invariant
Hermitian product. The matrix elements of V are the functions

tVij : G→ C, tVij(g) := (gvi, vj).

If Fun(G,C) = HomSet(G,C), then one can show that the matrix elements
form an orthonormal basis with respect to a Hermitian product on Fun(G,C)
defined in the same way as for the space of class functions.

Remark 4.14. Let us explain how the representation theory of a finite
group can be summarized in the so-called character table. The characters
of all the irreducible representations of a finite group can be arranged into
a character table, with conjugacy classes of elements as the columns, and
characters as the rows. More specifically, the first row in a character table
lists representatives of conjugacy classes, the second one the numbers of
elements in the conjugacy classes, and the other rows list the values of the
characters on the conjugacy classes. Note that the rows and columns of
a character table are orthonormal with respect to the appropriate inner
products. Also, note that in any character table, the row corresponding to
the trivial representation consists of ones, and the column corresponding to
the neutral element consists of the dimensions of the representations.
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Example 4.15. This is the character table ofS3, which we discussed above:

S3 Id (12) (123)

# 1 3 2

C+ 1 1 1

C− 1 −1 1

C2 2 0 −1

This is obtained by explicitly computing traces in the irreducible represen-
tations.

Character tables also allow us to easily describe the tensor product of
representations in terms of irreducible ones: if

Vi ⊗ Vj =
⊕
k

Nk
ijVk,

then by a previous corollary, we know that

Nk
ij = (χVi⊗Vj , χVk

) = (χViχVj , χVk
).

Example 4.16. Following up the previous example, we have

S3 C+ C− C2

C+ C+ C− C2

C− C+ C2

C2 C+ ⊕ C− ⊕ C2

5 More on Representations of Finite Groups

Recall that a complex number z ∈ C is an algebraic number (resp. alge-
braic integer ) if it is a root of a monic polynomial with rational (resp.
integer) coefficients. Alternatively, z ∈ C is an algebraic number (resp. al-
gebraic integer) if it is an eigenvalue of a matrix with rational (resp. integer)
coefficients. The equivalence between the two approaches is of course the
characteristic polynomial.

The set of algebraic numbers is denoted by Q whereas the set of algebraic
integers is denoted by A.

Lemma 5.1. The set A is a ring, and Q is a field (concretely, it is the
algebraic closure of Q).
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Proof. The fact that both are rings follows because if A ∈ Mn(C) and
B ∈Mn(C) are square matrices, v is an eigenvector of A with eigenvalue α
and w is an eigenvector of B with eigenvalue β, then α± β is an eigenvalue
of A⊗Im+In⊗B (with eigenvector v⊗w) and αβ is an eigenvalue of A⊗B
(with eigenvector v ⊗ w). Now Q is a field because if α ̸= 0 is a root of a
polynomial p(x) of degree d, then α−1 is a root of xdp(x−1).

Lemma 5.2 (Integral Root Theorem). The set A ∩ Q = Z, that is, any
rational root of a monic integral polynomial is an integer.

Proof. If z is a root of an integral monic polynomial p(x) = xn + a1x
n−1 +

. . . + an−1x + an of degree n and z = p/q with p, q coprime integers, then
expanding p(z) = 0 and clearing denominators we have pn = −q(a1pn−1 +
· · · + anq

n−1), so q divides pn. But p and q are coprime, hence q = ±1.

Every algebraic number α has a minimal polynomial , which is the monic
polynomial with rational coefficients of the smallest degree such that p(α) =
0. Any other polynomial q(x) with rational coefficients such that q(α) = 0 is
divisible by p(x). Roots of p(x) are called the algebraic conjugates of α; they
are roots of any polynomial q with rational coefficients such that q(α) = 0.
Note that any algebraic conjugate of an algebraic integer is obviously also an
algebraic integer. Therefore, by the Vieta theorem (aka Cardano formulas),
the minimal polynomial p(x) of an algebraic integer has integer coefficients.

Theorem 5.3 (Frobenius Divisibility). Let G be a finite group and let V be
a finite-dimensional simple G-module. Then dimV divides |G|, the order of
G.

Proof. Let us denote the conjugacy classes of G by C1, . . . , Cn and their
representatives by g1, . . . , gn. Define

λi :=
χV (gi) · |Ci|

dimV
.

First, we claim that these are algebraic integers. Indeed, for C a conjugacy
class of G, let P :=

∑
h∈C h. Then P is a central element of Z[G], so it acts

on V by some scalar λ, which is an algebraic integer (since Z[G] is a finitely
generated Z-module, any element of Z[G] is integral over Z, i.e., satisfies a
monic polynomial equation with integer coefficients). On the other hand,
taking the trace of P in V , we get |C|χV (g) = λ dimV .
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Now consider the element

Q :=
∑
i

λiχV (gi).

The values χV (gi) are sums of roots of unity because so are the eigenvalues of
ρ(g) (because the order of g is finite), so each χV (gi) is an algebraic integer;
hence Q is also an algebraic integer since A is a ring. Therefore, we have

Q =
∑
i

λiχV (gCi) =
∑
i

|Ci|χV (gCi)χV (gCi)

dimV
=

∑
g∈G

χV (g)χV (g)

dimV
=
|G|(χV , χV )

dimV
=
|G|

dimV
.

So Q ∈ A, and |G|
dimV ∈ Q, so we conclude that Q is an integer by the

previous lemma.

Recall that a group is solvable if there is a sequence of nested normal
subgroups {e} = G1 ◁ G2 ◁ . . . ◁ Gn = G such that the subquotients are
abelian. The following theorem can be proven using representation theory.

Theorem 5.4 (Burnside). Any group G of order pnqm, where p and q are
primes, is solvable.

The following theorem is a consequence of the theorem above about the
irreducible representations of the tensor product of algebras.

Theorem 5.5. Let G,H be groups and let (Vi), (Wi) be the collection of
their irreducible representations, respectively. Then (Vi ⊗Wj) is the collec-
tion of irreducible representations of G×H.

A virtual representation is an element of Z[G∨], that is, a linear com-
bination of simple G-modules, V =

∑
i niVi. The character of V is χV :=∑

i niχVi .

Lemma 5.6. Let V be a virtual representation. If (χV , χV ) = 1 and
χV (e) > 0, then χV is the character of a simple G-module.

Proof. Let V1, V2, . . . , Vm be the irreducible representations of G, and V =∑
niVi. Then by the orthonormality of characters, (χV , χV ) =

∑
i n

2
i . So∑

i n
2
i = 1, meaning that ni = ±1 for exactly one i, and nj = 0 for j ̸= i.

But χV (e) > 0, so ni = +1 and we are done.

We now study the so-called restricted and induced representations. Let
G be a group and let H ⊂ G be a subgroup. If V is a G-module (over
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a ground field k), then V is trivially an H-module by restricting to ele-
ments of H, and it is denoted by ResGH(V ) and will be called the restricted
representation . In fact, this defines a functor

ResGH : ModG → ModH .

Now if V is an H-module, aka an k[H]-module, then we can define a
G-module by extension of scalars,

IndGH(V ) := V ⊗k[H] k[G],

and it will be called the induced representation . Note that there is a linear
isomorphism

k[G]
∼=→ k[G]∗ , g 7→ δg

which is in fact of G-modules: hδg(x) = δg(h
−1x) = δhg(x). This implies

the following isomorphism of G-modules:

V ⊗k[H] k[G]
∼=→ V ⊗k[H] k[G]∗

∼=→ HomH(k[G], V ),

where the G-action on HomH(k[G], V ) is given by (g · φ)(x) := φ(xg). Also
note that

dim(IndGH(V )) = dim(V )
|G|
|H|

(this is an integer by Lagrange’s theorem), roughly because if g, g′ belong to
the same H-coset, g′ = hg; then g ⊗ v = g ⊗ hh−1v = g′ ⊗ h−1v. Similarly,
this construction defines a functor

IndGH : ModH → ModG.

Since this is an instance of restriction-(co)extension of scalars in modules,
by the general adjunctions there we get

Theorem 5.7 (Frobenius Reciprocity). Let H ⊂ G. There are adjunctions

IndGH : ModH ⇆ ModG : ResGH

and
ResGH : ModG ⇆ ModH : IndGH .

That is, if V is a G-module and W is an H-module, then there are bijections

HomG(Ind
G
H(W ), V )

∼=→ HomH(W,ResGH(V ))

and
HomH(ResGH(V ),W )

∼=→ HomG(V, Ind
G
H(W )).
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Taking dimensions and using the Schur orthogonality relations we get

Corollary 5.8 (Frobenius Reciprocity for Characters). In the notation of
the theorem above, we have

⟨χResGH(V ), χW ⟩G = ⟨χV , χIndGH(W )⟩H .

In particular, if V,W are irreducible, then the multiplicity of V in IndGH(W )
equals the multiplicity of W in ResGH(V ).

Example 5.9. Put G = S3 and H = Z/2 = ⟨(12)⟩. Applying the previous
corollary, we compute

IndGH(C+) = C+ ⊕ C2 , IndGH(C−) = C− ⊕ C2,

because ResGH(C2) = C+ ⊕ C−.

We can also compute the character of the induced representation:

Theorem 5.10 (Mackey Formula). Let H ⊂ G and let V be an H-module.
The character of the induced representation IndGH(V ) is given by

χIndGH(V )(g) =
∑

χV (xgx
−1),

where the sum runs over the right cosets [x] ∈ H\G such that xgx−1 ∈ H.

6 Representation theory of Sn

Since we know that there are as many irreducible representations of a finite
group as conjugacy classes in the group, let us start by recalling the conju-
gacy classes of Sn. Given σ ∈ Sn, write it as a product of disjoint cycles
of lengths k1 ≥ k2 ≥ · · · ≥ kp, where we include the 1’s in the list for fixed
points. The length type of σ is the tuple (k1, k2, . . . , kp). For example, if
σ ∈ S10, σ = (2578)(1369), then its length type is (4, 4, 1, 1).

Lemma 6.1. Two permutations σ, σ′ ∈ Sn are conjugated if and only if
they have the same length type.

If n is a positive integer, a partition of n is a tuple λ = (k1, k2, . . . , kp)
as above, with ki ≥ ki+1 and n =

∑
i ki. Therefore, there are as many

irreducible representations of Sn as partitions λ of n.
To every partition λ, we will attach a Young diagram Yλ, which is a

picture in the plane consisting of k1 boxes in a row, below which are k2
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boxes, and so on. A Young tableau Tλ corresponding to Yλ is the result
of filling the numbers 1, . . . , n into the squares of Yλ in some way (without
repetitions).

This is an example of a Young tableau for a permutation of S10 of cycle
type (5, 4, 1):

For every Young tableau Tλ, we will define two subgroups Pλ, Qλ in
Sn: the row subgroup Pλ is the subgroup of permutations that permute
elements in the same row; and the column subgroup Qλ is the subgroup
of permutations that permute elements in the same column. Note that
Pλ ∩Qλ = {Id}. Now define the Young projectors

aλ :=
1

|Pλ|
∑
σ∈Pλ

σ, bλ :=
1

|Qλ|
∑
σ∈Qλ

sign(σ)σ.

Also set cλ = aλbλ, which is called the Young symmetriser , and note
that this element is nonzero as Pλ ∩Qλ = {Id}.

Now consider the left regular representation C[Sn]. The Specht module
associated to Tλ is the subrepresentation

Vλ := C[Sn]cλ ⊂ C[Sn].

Theorem 6.2. The Specht modules Vλ exhaust all irreducible representa-
tions of Sn,

S∨
n = {Vλ}λ.

Examples 6.3. 1. If λ = (n), then Pλ = Sn and Qλ = Id, so cλ is the
symmetriser, and Vλ is the one-dimensional trivial representation.

2. If λ = (1, . . . , 1), then Qλ = Sn and Pλ = Id, so cλ is the antisym-
metriser, and Vλ is the one-dimensional sign representation.

3. If n = 3 and λ = (2, 1), then Vλ = C2, the representation that per-
mutes the vertices of the equilateral triangle.

Let us now introduce a lexicographic order in the set of partitions of a
given n: we put λ > µ if the first non-vanishing λi − µi is positive. This
allows us to describe the induced representation IndSn

Pλ
(C) ∼= C[Sn]aλ in

terms of irreducible ones:
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Proposition 6.4. We have

IndSn
Pλ

(C) =
⊕
µ≥λ

KµλVµ,

for some non-negative integers Kµλ which are called the Kostka numbers.

We can also compute the character of IndSn
Pλ

(C). For m > 0 and x =
(x1, . . . , xN ), let

Hm(x) :=
∑
i

xmi .

Now, let C be the conjugacy class of Sn having iℓ cycles of length ℓ for all
ℓ > 0.

Theorem 6.5. Let N be the number of parts of λ (i.e., λ = (λ1, . . . , λN )). If
σ ∈ Sn has iℓ cycles of length ℓ for ℓ > 0, then χ

IndSn
Pλ

(C)(σ) is the coefficient

of xλ :=
∏

j x
λj

j in the polynomial∏
m≥1

Hm(x)im .

Let us write ∆(x) :=
∏

1≤i<j≤N (xi − xj) for the Vandermonde poly-
nomial . The following theorem gives a formula for the character of the
irreducible representations of Sn:

Theorem 6.6 (Frobenius character formula). Let N be the number of parts
of λ. If σ ∈ Sn has iℓ cycles of length ℓ for ℓ > 0, then χVλ

(σ) is the

coefficient of
∏

j x
λj+N−j
j in the polynomial

∆(x)
∏
m≥1

Hm(x)im .

Because dim(Vλ) = χVλ
(id), we can use the character formula to compute

the dimensions of the Specht modules. We need a definition before: for
a square (i, j) in a Young diagram λ, where i, j ≥ 1, i ≤ λj , define the
hook length of (i, j) to be the number h(i, j) of squares (i′, j′) in λ with
i′ ≥ i, j′ = j or i′ = i, j′ ≥ j.

Theorem 6.7 (Hook length formula). The dimension of the Specht modules
is given by

dim(Vλ) =
n!∏

i≤λj
h(i, j)

.
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We now move on to study how the representation theory of Sn interacts
with that of the Lie algebra gln(C) (and also with that of GL(V )), which
is known as Schur-Weyl duality . First, we need a result of independent
interest. Let R be a ring and S ⊂ R a subring. The centraliser of S is

CR(S) := {r ∈ R : rs = sr ∀s ∈ S}.

It is always the case that S ⊂ CR(CR(S)), but whether equality holds de-
pends on the specific situation. Now our main case of interest is when R =
End(V ), the ring of endomorphisms of a finite-dimensional complex vector
space V . If A ⊂ End(V ) is a subring, then V inherits a canonical structure
of A-module: f ·v := f(v). It is readily verified that CEnd(V )(A) = EndA(V ).

Theorem 6.8 (Double centraliser theorem). Let E be a finite-dimensional
complex vector space, let A ⊂ End(E) be a semisimple subalgebra, and let
B := CEnd(E)(A) = EndA(E). Then:

1. CEnd(E)(CEnd(E)(A)) = A, that is, EndB(E) = A.

2. B is semisimple.

3. If (Ui) is the set of simple A-modules, then setting Wi := Hom(Ui, E),
we have that (Wi) is the set of simple B-modules.

4. View E as an A⊗B-module, (f⊗g)·v := f(g(v)). Then E decomposes
as

E ∼=
⊕
i

Ui ⊗Wi.

For a proof, see here.
We want to apply the previous theorem to the situation where E = V ⊗n,

and A is the image of C[Sn] in End(V ⊗n) (here we view C[Sn] acting on
V ⊗n by permuting the factors). The key observation is that A is semisimple:
for note that A is the quotient of C[Sn] modulo the kernel of ρ : C[Sn] →
End(V ⊗n) (which is an ideal). But in general if I ⊂ D is a two-sided ideal
(of an arbitrary finite-dimensional algebra D), we have that Rad(D/I) =
(Rad(D) + I)/I. In particular, if D is semisimple, so is D/I. Hence A =
C[Sn]/ ker(ρ) is semisimple.

On the other hand, there is a natural action ρ : gl(V ) → End(V ⊗n) of
gl(V ) on V ⊗n, namely

ρ(f) =
∑
i

Id⊗ · · · ⊗ f ⊗ · · · ⊗ Id.
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This action extends to U(gl(V )) via the universal enveloping algebra ad-
junction

HomAlg(U(g), A) ∼= HomLieAlg(g,LA).

Lemma 6.9. The image of U(gl(V )) in End(V ⊗n) equals B = EndC[Sn](V
⊗n).

Recall that A is the image of C[Sn] in End(V ⊗n) and B is the image
of U(gl(V )) in End(V ⊗n). By the double centraliser theorem, these are
centralisers of each other. We also have that B is semisimple.

Theorem 6.10 (Schur-Weyl duality for gl(V )). The algebras A and B are
centralisers of each other, B is semisimple, and

V ⊗n =
⊕
|λ|=n

Vλ ⊗Mλ,

where the sum is taken over partitions of n, the Vλ are Specht modules for
Sn, and Mλ are irreducible representations of gl(V ), or zero.

There is an action ρ : GL(V )→ End(V ⊗n) given by

ρ(f) = f ⊗ · · · ⊗ f ⊗ · · · ⊗ f,

which commutes with the Sn-action. It is not hard to see that the image of
GL(V ) in End(V ⊗n) spans B, and again by the double centraliser theorem
we get:

Theorem 6.11 (Schur-Weyl duality for GL(V )). We have a decomposition

V ⊗n =
⊕
|λ|=n

Vλ ⊗ Lλ

as a representation of Sn ×GL(V ), where the sum is taken over partitions
of n, the Vλ are Specht modules for Sn, and Lλ = HomSn(Vλ, V

⊗n) are
distinct irreducible representations of GL(V ), or zero.

7 Intermezzo: Semisimple Lie Algebras

Before studying the representation theory of semisimple Lie algebras, we
will review their classification.

A Lie algebra (over a field k of characteristic zero unless otherwise stated)
is abelian if it has a trivial bracket, [g, g] = 0. If V is a vector space,
a Lie subalgebra of gl(V ) = End(V ) is called a linear Lie algebra. By
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a theorem of Ado, every finite-dimensional Lie algebra is isomorphic to a
linear Lie algebra, i.e., every finite-dimensional Lie algebra has a faithful
finite-dimensional representation.

If A is an algebra, a derivation is a linear map δ : A → A satisfying
δ(xy) = δ(x)y+ xδ(y). The set of derivations Der(A) is a Lie subalgebra of
gl(A). Now if A = g is a Lie algebra and z ∈ g,

adz := [z,−] : g→ g

is a derivation by the Jacobi identity and therefore we have the adjoint
representation

ad : g→ Der(g) ⊂ gl(g).

An ideal in a Lie algebra g is a vector subspace I such that [I, g] ⊂ I.
For instance, the derived algebra [g, g] is always an ideal of g. Also, the
centre Z(g) := ker(ad) is also an ideal.

A Lie algebra is simple if it is nonabelian and has no ideals except for 0
and g. Hence if g is simple, Z(g) = 0 and [g, g] = g.

The derived series of g is

g ⊃ g(1) ⊃ g(2) ⊃ · · · ⊃ g(n) ⊃ · · ·

with g(1) = [g, g] and g(n) = [g(n−1), g(n−1)]. The Lie algebra is called
solvable if g(n) = 0 for some n.

Similarly, the lower central series of g is

g ⊃ g1 ⊃ g2 ⊃ · · · ⊃ gn ⊃ · · ·

with g1 = [g, g] and gn = [g, g(n−1)]. The Lie algebra is called nilpotent if
gn = 0 for some n. Note that g(n) ⊂ gn (this can be shown inductively),
hence nilpotent implies solvable.

An element x ∈ g is ad-nilpotent if adx is a nilpotent endomorphism,
adnx = 0 for some n. Note that if g is nilpotent, then every element is
ad-nilpotent. The converse also holds:

Theorem 7.1 (Engel). A finite-dimensional Lie algebra is nilpotent if and
only if all elements are ad-nilpotent.

The solvable radical Rad(g) of g is defined to be the largest solvable
ideal of g. A Lie algebra is semisimple if its solvable radical is zero, i.e., if it
has no nonzero solvable ideal. Also recall that the Killing form of g is the
symmetric bilinear form

κ : g× g→ k, κ(x, y) := tr(ad(x) ◦ ad(y)).

The Killing form is associative in the sense that κ([x, y], z) = κ(x, [y, z]).
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Theorem 7.2. Let g be a finite-dimensional complex Lie algebra. Then the
following are equivalent:

1. g is a semisimple Lie algebra.

2. g has no nonzero abelian ideals.

3. The Killing form of g is nondegenerate.

4. g is a direct sum of simple Lie algebras.

Examples 7.3. The following are simple complex Lie algebras (and will
turn out to be the only ones):

1. an = sl(n+ 1), n ≥ 1.
The subalgebra of gl(n+1) of traceless matrices, tr(X) = 0. We have
dim(an) = (n + 1)2 − 1. Note that we have removed a0 = sl1 since it
is trivial, hence not simple.

2. bn = so(2n+ 1), n ≥ 2.
The subalgebra of gl(2n+ 1) of skew-symmetric matrices, XT = −X.
We have dim(bn) = n(2n+1). Note that we have removed bi = ai for
i = 0, 1.

3. cn = sp(2n), n ≥ 3.
The subalgebra of gl(2n) of symplectic matrices,

XT

(
0 In
−In 0

)
= −

(
0 In
−In 0

)
X.

We have dim(cn) = n(2n+ 1). Note that we have removed ci = bi for
i = 1, 2.

4. dn = so(2n), n ≥ 4.
The subalgebra of gl(2n) of skew-symmetric matrices, XT = −X. We
have dim(dn) = n(2n − 1). Note that we have removed di = ai for
i = 1, 3 and d2 ∼= a2 ⊕ a2, which is semisimple but not simple.

5. The exceptional Lie algebras e6, e7, e8, f4 and g2 of dimensions 78, 133,
248, 52 and 14, respectively.
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7.1 Abstract Root Systems, Cartan Matrices, and Dynkin
Diagrams

Roughly speaking, the classification theorem that we are chasing after will
state that there are one-to-one correspondences between four different pieces
of data:

1. Semisimple Lie algebras (up to isomorphism).

2. (Abstract) Root systems (up to isomorphism).

3. (Abstract) Fundamental systems (up to isomorphism).

4. (Abstract) Cartan matrices (up to isomorphism).

5. (Abstract) Dynkin diagrams (up to isomorphism).

With the equivalence of these five pieces of data at hand, we will classify
abstract Cartan matrices, which will lead to a classification of semisimple
Lie algebras. To begin with, we will forget about Lie algebras for a moment
and focus on defining (2)-(5) and studying their equivalences. Later on, we
will associate to each semisimple Lie algebra one object of (2)-(5), but a
priori (2)-(5) have nothing to do with Lie algebras.

Let V be a Euclidean vector space, and let (−,−) be its inner product.
For α, β ∈ V , the mapping

sα : V → V, sα(β) := β − 2
(β, α)

(α, α)
α

is called the reflection in α, since it is the reflection with respect to the
hyperplane Pα = {β ∈ V : (α, β) = 0}.

An (abstract) root system is a pair (V,Φ) where V is a finite-dimensional
Euclidean vector space, and Φ is a finite set of nonzero vectors, called roots,
such that:

1. Φ spans V .

2. If α ∈ V , then −α ∈ V and no other real multiple of α is in Φ.

3. For any two roots α, β ∈ Φ, the reflection in α of β is another root,

sα(β) = β − 2
(β, α)

(α, α)
α ∈ Φ.
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4. (Integrality condition) For any two roots α, β ∈ Φ,

⟨α, β⟩ := 2
(β, α)

(α, α)
∈ Z,

that is, β and its reflection sα(β) differ by an integer multiple of α.
These integers ⟨α, β⟩ are called the Cartan integers.

The rank of (V,Φ) is the dimension of V . An abstract root system is
irreducible or indecomposable if it cannot be decomposed into a union Φ1⨿Φ2

of two disjoint orthogonal nonempty subsets of Φ. Any abstract root system
decomposes as the union of irreducible root systems, and the vector space
decomposes as an orthogonal sum of the irreducible ones.

An abstract root system isomorphism φ : (V,Φ)→ (V ′,Φ′) is a similarity
φ : V → V ′ (isometry up to a constant factor, i.e., (φ(α), φ(β)) = λ · (α, β)
for some λ > 0 for all α, β ∈ Φ) such that φ(Φ) = Φ′. That is, φ is a linear
isomorphism that takes one set of roots onto the other and preserves the
Cartan integers, ⟨φ(α), φ(β)⟩ = ⟨α, β⟩ for all α, β ∈ Φ.

Lemma 7.4 (Finiteness). For any roots α, β ∈ Φ with β ̸= ±α, we have
that

⟨α, β⟩⟨β, α⟩ ∈ {0, 1, 2, 3}.

Note that

⟨α, β⟩⟨β, α⟩ = 4
(α, β)2

|α|2|β|2
= 4 cos2 θ

where θ is the angle between the two roots. This yields the following table
of possibilities, assuming |β| ≥ |α| and β ̸= ±α:

⟨α, β⟩ ⟨β, α⟩ θ |β|/|α|
0 0 π/2 undetermined
1 1 π/3 1
−1 −1 2π/3 1

1 2 π/4
√
2

−1 −2 3π/4
√
2

1 3 π/6
√
3

−1 −3 5π/6
√
3

If β ̸= ±α are roots, the α-string of roots containing β is the set (β +
Zα) ∩ Φ.

Lemma 7.5 (String property). The α-string of roots containing β is of the
form {β + iα : −p ≤ i ≤ q} where p, q ≥ 0 and p− q = ⟨β, α⟩ ≤ 4.
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The table and this property allow us to determine the root systems (at
least in low dimensions).

A subset ∆ of Φ is called a fundamental system or base for the root
system (V,Φ) if it is a basis for V and every root β can be written as an
integral linear combination of elements of ∆ with all the integer coefficients
having simultaneously the same sign. Given a choice of base, roots in ∆ are
called simple. Roots that are positive (resp. negative) linear combinations
of simple roots are called positive (resp. negative), and denoted Φ+ (resp.
Φ−), so that Φ = Φ+⨿Φ−. It can be shown that every abstract root system
has a base.

Given an abstract root system (V,Φ), the subgroup of GL(V ) generated
by all reflections sα for all α ∈ Φ is called the Weyl group of Φ and denoted
W (Φ).

Proposition 7.6 (Properties of the Weyl group). We have:

1. The Weyl group W (Φ) is a finite group.

2. W (Φ) permutes the roots.

3. Given two sets of positive roots, there exists an element of the Weyl
group that takes one to the other.

4. Given two sets of simple roots, there exists a unique element of the
Weyl group that takes one to the other.

5. W (Φ) is generated by reflections of simple roots.

6. Given a root α, there exists a simple root αi and s ∈ W (Φ) such that
α = s(αi).

Note that (4) in the above proposition says that there is a bijection
between sets of simple roots and elements of the Weyl group. The Weyl
group is an example of a Coxeter group.

An important property of irreducible root systems is the following:

Proposition 7.7. If Φ is an irreducible root system, then at most two dif-
ferent lengths occur in Φ, and furthermore all roots of a given length are
conjugate under the action of the Weyl group.

When two different lengths occur, we talk of short and long roots, so
every root is therefore either short or long.

It turns out that a fundamental system for an (abstract) root system
determines it. For this, we want to take one level of abstraction up and
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isolate the notion of a fundamental system. Here is the definition: an ab-
stract fundamental system is a pair (V,∆) where V is a finite-dimensional
Euclidean space and ∆ = {α1, . . . , αn} is a choice of basis with the property
that

⟨αi, αj⟩ := 2
(αi, αj)

(αj , αj)
∈ Z≤0

(in fact, as above, the only values this can take are 0,−1,−2,−3). As for
root systems, two abstract fundamental systems are isomorphic if there is
a similarity between the Euclidean spaces taking one basis onto the other
or, equivalently, a linear isomorphism taking one basis onto the other and
preserving the Cartan integers. The notion of irreducibility goes as for root
systems.

The properties above imply the following:

Theorem 7.8. The passage from an abstract root system to a fundamental
system explained above induces a bijection(

abstract root
systems

)
isomorphism

∼=−→

(
abstract fundamental

systems

)
isomorphism

which makes corresponding irreducible abstract root systems with irreducible
abstract fundamental systems.

Proof. The well-definedness follows from the notions of isomorphism, the
fact that every root system has a base, that any two fundamental systems
are related by an element of the Weyl group (hence an isometry), and the
property that distinct simple roots α, β satisfy that (α, β) ≤ 0 because α−β
can be seen not to be a root, and one can show that if (α, β) > 0 then either
α−β is a root or α = β. The fundamental system of a root system uniquely
determines it: indeed, by the proposition above about the properties of the
Weyl group, (5) says that this is generated by the fundamental system, and
by (6) the rest of the roots can be recovered by applying the Weyl group to
the fundamental system. This proves both injectivity and surjectivity.

To each abstract fundamental system, we will associate a so-called Car-
tan matrix. Here is the relevant definition: an abstract Cartan matrix is an
integral square matrix C = (cij) ∈Mn(Z) satisfying:

1. cii = 2,

2. cij ≤ 0 for all i ̸= j,
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3. cij = 0 if and only if cji = 0,

4. C is symmetrisable, i.e., there exists a diagonal matrix D with positive
entries such that DCD−1 is a symmetric, positive definite matrix.

Two abstract Cartan matrices are isomorphic if one is conjugated to the
other by a permutation matrix (the base change matrix between two bases
that differ by some permutation of indices), that is, they differ by changing
the enumeration of the indices of one of the matrices. An abstract Cartan
matrix is reducible if, for some enumeration of indices, the matrix is block
diagonal (with more than one block), otherwise it is irreducible. Obviously,
several abstract Cartan matrices can be arranged as the blocks of a block-
diagonal matrix yielding a new abstract Cartan matrix. The converse also
holds: any abstract Cartan matrix, after a suitable enumeration of indices
(i.e., is isomorphic to), can be written in block-diagonal form with each block
an irreducible abstract Cartan matrix.

It is important to note that the diagonal matrix D from (4) in the above
definition is essentially unique:

Lemma 7.9. Let C be an abstract Cartan matrix in block-diagonal form
with each of the blocks an irreducible abstract Cartan matrix. Then the
associated matrix D is unique up to a multiplicative scalar on each block.

Proposition 7.10. If C is an abstract Cartan matrix and i ̸= j, then

1. cijcji < 4.

2. cij ∈ {0,−1,−2,−3}.

In particular, if cij = −2 or −3, then cji = −1.

We will now associate, to every abstract fundamental system (V,∆), an
abstract Cartan matrix C(V,∆). If ∆ = {α1, . . . , αn} is the set of simple
roots, then define

C(V,∆) := (⟨αi, αj⟩).

Theorem 7.11. We have:

1. C(V,∆) is indeed an abstract Cartan matrix.

2. Isomorphic abstract fundamental systems give isomorphic Cartan ma-
trices.

3. An abstract fundamental system is determined, up to isomorphism, by
its Cartan matrix.
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4. Any abstract Cartan matrix arises as the Cartan matrix of an abstract
fundamental system.

5. A fundamental system (V,∆) is irreducible if and only if the Cartan
matrix C(V,∆) is irreducible.

The previous theorem says that there is a bijection:(
abstract fundamental

systems

)
isomorphism

∼=

(
abstract Cartan

matrices

)
isomorphism

.

Indeed, (1) – (3) says that the passage (V,∆) 7→ C(V,∆) is well-defined, (4)
says that the map is injective, and (5) that it is surjective. Furthermore, (6)
says that this bijection makes correspond irreducible fundamental systems
with irreducible Cartan matrices.

About the proof. (1) is standard, see e.g., Knapp Proposition 2.52. Note
that one can take D = diag(|α1|, . . . , |αl|) to check that the Cartan matrix
is symmetrisable. (2) is obvious by definition. (3) First, we can recover the
norms of the simple roots from the diagonal matrix D (up to a proportion-
ality constant). With the entries of the Cartan matrix and these values, the
inner product is fully determined (up to a constant). The root system is
recovered from the simple roots because of (5) and (6) from the proposition
about the properties of the Weyl group. (4) requires a case-by-case analysis
of the Dynkin diagrams. (5) See Knapp Proposition 2.54.

The datum of an abstract Cartan matrix can be encoded in a planar
graph called the Dynkin diagram. Here is the definition: if C ∈ Mn(Z)
is an abstract Cartan matrix, the abstract Dynkin diagram associated to
C is the planar graph D(C) that has n (the size of C) vertices, and the
vertices i and j are connected by cijcji = 0, 1, 2, 3 edges. If cijcji = 2, 3
and |cij | < |cji|, then the corresponding double/triple edge is decorated
with an arrow from i to j. An isomorphism of Dynkin diagrams is a graph
isomorphism that preserves the orientation of the additional arrows.

The Dynkin diagram fully determines the Cartan matrix: indeed, if there
are no edges between vertices i and j, then cijcji = 0 and so one of them
is 0, but by the defining property cij = cji = 0. Now if one edge connects
i and j, cijcji = 1 and necessarily cij = cji = −1. If two or three edges
connect i and j, cijcji = 2, 3, then necessarily one of them equals 1 and the
other 2,3; and this is decided by the direction of the arrow: from i to j if
|cij | < |cji|.
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This establishes a bijection(
abstract Cartan

matrices

)
isomorphism

∼=

(
abstract Dynkin

diagrams

)
isomorphism

(surjectivity comes from the definition). Obviously, irreducible Cartan ma-
trices correspond to connected Dynkin diagrams.

The classification of root systems, fundamental systems, and Cartan
matrices is then reduced to the classification of connected Dynkin diagrams.
See Samelson’s book for a readable proof.

Theorem 7.12 (Classification of Dynkin diagrams). The following list ex-
hausts all possible connected Dynkin diagrams, and all diagrams are pairwise
non-isomorphic:

In the figure, n indicates the number of vertices. The diagrams An, Bn,
Cn, Dn are called the classical diagrams, whereas E6, E7, E8, F4, G2 are
called the exceptional diagrams. For completeness, let us also write down
the Cartan matrices corresponding to these Dynkin diagrams:

An =



2 −1 0 · · · 0

−1 2 −1
...

0 −1 2
. . . 0

...
. . .

. . . −1
0 · · · 0 −1 2


, Bn =



2 −1 0 · · · 0

−1 2 −1
...

0 −1 2
. . . 0

...
. . .

. . . −1
0 · · · 0 −2 2


,
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Cn =



2 −1 0 · · · 0

−1 2 −1
...

0 −1 2
. . . 0

...
. . .

. . . −2
0 · · · 0 −1 2


, Dn =



2 −1 0 . . . . . . 0

−1 2 −1
...

0 −1 . . .
. . . 0 0

...
. . . 2 −1 −1

... 0 −1 2 0
0 . . . 0 −1 0 2


,

E6 =



2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

 , E7 =



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


,

E8 =



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


,

F4 =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 , G2 =

(
2 −1
−3 2

)
.

7.2 Classification of Complex Semisimple Lie Algebras

To close the circle, and finish what we came to do here, we would like to
explain how to construct a root system out of a semisimple Lie algebra, and
how the root system allows us to reconstruct the Lie algebra.

Let h be an abelian complex finite-dimensional Lie algebra, and let (V, ρ)
be a finite-dimensional h-module. Given α ∈ h∗, set

Vα := {v ∈ V : ρ(h)v = α(h)v ∀h ∈ h} =
⋂
h∈h

ker(ρ(h)− α(h)Id).

If Vα ̸= 0, the corresponding α ∈ h∗ is called a weight , and Vα is called a
weight space. Write Π(ρ) for the set of weights.
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Theorem 7.13 (Weight Space Decomposition). Let h be an abelian com-
plex finite-dimensional Lie algebra, and let (V, ρ) be a finite-dimensional
h-module. Then Π(ρ) is nonempty. Moreover, if each ρ(h) is semisimple for
all h ∈ h, the V decomposes as a direct sum of weight spaces,

V =
⊕

α∈Π(ρ)

Vα.

Proof. Let h1, . . . , hn be a basis for h. ρ(h1), as a complex endomorphism,
has some eigenvalue α1, and let E1 := Vα1 for the corresponding eigenspace.
By the key observation, all ρ(h) : V → V preserve E1, i.e., they restrict
to maps E1 → E1. Consider such a restriction for ρ(h2) : E1 → E1. The
same story: it has an eigenvalue α2 with corresponding eigenspace E2 ⊂ E1.
The moral is that we get a sequence 0 ̸= En ⊂ · · · ⊂ E1 such that hi acts
as multiplication by αi on Ei. Define α : h → C by α(hi) = αi. Then by
construction 0 ̸= En ⊂ Vα, i.e., α ∈ Π(ρ).

For the decomposition, one argues similarly: since ρ(h1) is diagonaliz-
able, let µ1, . . . , µr be the different eigenvalues of ρ(h1), and let V = ⊕iVµi

be the eigenspace decomposition. We can again restrict ρ(h2) to each of the
pieces, ρ(h2) : Vµi → Vµi . This restriction is again diagonalizable, so each
Vµi decomposes as Vµi = Vµi,λi

1
⊕ · · · ⊕ Vµi,λi

k
where the λi

j are the different
eigenvalues. The story continues again. In total, we get a decomposition
V = V1 ⊕ · · · ⊕ VN such that hj acts by a scalar αij ∈ C on Vi. Define
αi : h → C by αi(hj) := αij . Note that all the αi are pairwise distinct,
because the eigenvalues were chosen to be distinct for each hj . It readily
follows that Vi = Vαi , hence we are done.

We will apply the previous result in the following context: let g be a
complex finite-dimensional semisimple Lie algebra. A Cartan subalgebra
is a maximal abelian sub-Lie algebra h consisting only of ad-semisimple
elements. In a semisimple Lie algebra, such a Cartan subalgebra always
exists, and it is nontrivial. If g is semisimple, then it is not solvable (i.e., g has
no solvable ideals; in particular, g cannot be solvable). Not solvable implies
not nilpotent as we saw before, and by Engel’s theorem, there must be an
element x which is not ad-nilpotent. The Jordan-Chevalley decomposition
theorem says that any endomorphism decomposes as the sum of a semisimple
(=diagonalizable) endomorphism and a nilpotent one. Hence for ad(x),
the semisimple part cannot be zero. The subalgebra generated by all ad-
semisimple elements, which is abelian, is the Cartan subalgebra.

We now fix for once and for all a choice of Cartan subalgebra h and
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consider the restriction of the adjoint representation to h,

ad : h→ gl(g).

A nonzero weight for the adjoint representation is called a root, and the set
of roots is denoted by Φ. Each of the weight spaces is a root space, and
by the weight space decomposition theorem, we get the so-called root space
decomposition:

g = g0 ⊕
⊕
α∈Φ

gα,

where
gα = {x ∈ g : [h, x] = α(h)x ∀h ∈ h}.

Note that g0 = ker(ad|h) =: Cg(h), the centralizer of h in g.

Theorem 7.14. Any Cartan subalgebra is self-centralizing, i.e., g0 = Cg(h) =
h.

Therefore, the root space decomposition can be rewritten as

g = h⊕
⊕
α∈Φ

gα.

Proposition 7.15. (Properties) We have:

1. If α, β ∈ h∗, then [gα, gβ] ⊂ gα+β,

2. If α, β ∈ h∗ and β ̸= −α, then the respective root spaces are orthogonal,
κ(gα, gβ) = 0,

3. The restriction of κ to h is also non-degenerate.

Property 3. says that the Killing form gives rise to an isomorphism

h
∼=→ h∗ , h 7→ κ(h,−).

Given α ∈ h∗, its image under the inverse of this isomorphism is denoted
tα. In other words, tα is the unique element such that α = κ(tα,−). This
allows us to define a bilinear form on h∗:

(α, β) := κ(tα, tβ).

Of course, the theorem will be that these roots give rise to an abstract
root system. Now we have to construct a (real) Euclidean vector space for
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these roots to live, so far we are working over C. In order to understand
why we can restrict to reals from complex numbers, we first need to under-
stand how integers appear in quotients involving the defined inner product
in h∗. The answer is: every complex semisimple Lie algebra g has a copy
of sl(2,C) inside, so that g can be seen as an sl(2,C)-module, and inte-
gers will emerge from the fact that the sl(2,C) triple acts by integers on a
simple sl(2,C)-module. The following is Proposition 1.15.8 in Hazewinkel-
Gubareni-Kirichenko:

Proposition 7.16. (Properties) Let α ∈ Φ. We have:

1. Φ spans h∗,

2. If α ∈ Φ, then −α ∈ Φ,

3. If x ∈ gα and y ∈ g−α, then [x, y] = κ(x, y)tα,

4. [gα, g−α] ⊂ g0 = h is a 1-dimensional linear subspace spanned by tα,
i.e., [gα, g−α] = C · tα,

5. α(tα) = κ(tα, tα) ̸= 0,

6. For any x ∈ gα, there exists an element y ∈ g−α such that the elements
x, y, h := [x, y] span a 3-dimensional simple subalgebra Sα isomorphic
to sl(2,C) via

x 7→
(
0 1
0 0

)
, y 7→

(
0 0
1 0

)
, h 7→

(
1 0
0 −1

)
.

We will write xα, yα, hα to emphasize the dependency on the choice of
root.

7. hα = 2tα
κ(tα,tα)

and hα = h−α.

8. dim gα = 1. Hence Sα
∼= gα ⊕ g−α ⊕ Chα.

Each of the hα is called a coroot. The (additive) subgroup generated by
the coroots is called the coroot lattice.

I want to explain using the above proposition how the Cartan integers
are indeed integers. Let α, β ∈ Φ. The α-root string through β is defined as

gβα :=
⊕
n∈Z

gβ+nα.
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It follows from the property that [gα, gβ] ⊂ gα+β and the one stating that
[x, y] = κ(x, y)tα that gβα is invariant under the actions of xα, yα, hα, and
so gβα is in fact an Sα

∼= sl2-module. Now, the elements of gβα satisfy
[h, x] = (β + nα)(h)x for h ∈ h, in particular for hα. In particular, the
eigenvalues of ad(hα) in gβα must be

(β + nα)(hα) = β(hα) + 2n,

where we have used that α(hα) = 2α(tα)/κ(tα, tα) = 2. But, from the
representation theory of sl2, we know that hα has integral eigenvalues. Hence
β(hα) ∈ Z. But we have

β(hα) = κ(tβ, hα) =
2κ(tβ, tα)

κ(tα, tα)
=

2(β, α)

(α, α)
,

hence 2(β,α)
(α,α) ∈ Z.

Let us now explain how to construct the real Euclidean vector space
where our roots will live (now they live in h∗, which is a complex vector
space!). The first observation is that Φ spans h∗: suppose it does not. Then
there is some 0 ̸= h ∈ h such that α(h) = 0 for all α ∈ Φ. But then for any
x ∈ gα, [h, x] = α(h)x = 0, and for any h′ ∈ h we also have [h, h′] = 0 since
h is abelian. So h commutes with all generators of g, hence it lives in the
centre Z(g). But Z(g) = 0 because g is semisimple. Therefore, choose a basis
α1, . . . , αn of h∗ consisting of roots. Now I claim that any other root β ∈ Φ is
a rational linear combination of the αi’s. For let β = c1α1+c2α2+· · ·+cnαn,
with ci ∈ C. For each j, (β, αj) =

∑n
i=1 ci(αi, αj), i.e.,

2(β, αj)

(αj , αj)
=

n∑
i=1

2(αi, αj)

(αj , αj)
ci.

Consider the right-hand side of the previous equation as a system of n lin-
ear equations with unknowns ci with integer coefficients, since these are
Cartan numbers. Because the αi’s form a basis for h∗ and (−,−) is non-
degenerate, the matrix ((αi, αj)) is nonsingular, hence neither is the matrix
((αi, αj)/(αj , αj)). Hence the system has a unique solution over Q.

This implies that Φ ⊂ spanQ(α1, . . . , αn) ⊂ h∗. Let EQ := spanQ(α1, . . . , αn),
a rational vector space. Now I claim that (−,−) is positive definite on this
rational vector space. This readily follows from the following: if λ ∈ h∗,

(λ, λ) = κ(tλ, tλ) = Tr(ad tλ ad tλ) =
∑
β∈Φ

β(tλ)
2 =

∑
β∈Φ

(β, λ)2,
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where in the third equality we have used that ad tλ acts on gβ by multi-
plication by β(ad tλ). So (−,−) is positive semi-definite, and since it is
non-singular, it has to be positive definite. The real Euclidean vector space
we were looking for is then E := EQ ⊗Q R.

Theorem 7.17. Let g be a complex semisimple Lie algebra and let h be a
choice of Cartan subalgebra. Then the construction above of (E,Φ) is an
abstract root system. Moreover, the Lie algebra is simple if and only if the
root system is irreducible.

In fact, one can also show that the construction of the root system is
independent of the choice of Cartan subalgebra (this is a very deep result).

Theorem 7.18. Let g be a complex semisimple Lie algebra, and let h1, h2
be two Cartan subalgebras. Then there exists an automorphism φ : g → g
such that φ(h1) = h2.

The dimension of any Cartan subalgebra is called the rank of the Lie
algebra.

The two previous theorems combined establish a well-defined map(
complex semisimple

Lie algebras

)
isomorphism

→

(
abstract root

systems

)
isomorphism

The last thing we want to do is to prove that this map is a bijection.
Let us start proving that it is surjective.

Let g be a (complex finite-dimensional) semisimple Lie algebra, and con-
sider a fundamental system ∆ = {α1, . . . , αn}. For every i, consider gener-
ators xi := xαi , yi := yαi , and hi := hαi of Sαi .

Proposition 7.19. The elements xi, yi, hi for i = 1, . . . , n span g, and they
satisfy the following relations:

1. [hi, hj ] = 0,

2. [xi, yi] = hi,

3. [xi, yj ] = 0 if i ̸= j,

4. [hi, xj ] = cjixj,

5. [hi, yj ] = −cjiyj,

6. (adxi)
1−cji(xj) = 0 if i ̸= j,
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7. (ad yi)
1−cji(yj) = 0 if i ̸= j,

where C = (cij) is the Cartan matrix associated to ∆.

The generators in the preceding proposition are called the standard gen-
erators or Chevalley generators. The relations (1)-(7) are called the Serre
relations. These form in fact a complete set of relations for any semisimple
Lie algebra:

Theorem 7.20 (Serre). Any complex, rank n semisimple Lie algebra g is
isomorphic to the free Lie algebra with generators xi, yi, hi for i = 1, . . . , n
subject to the Serre relations.

Serre’s theorem gives injectivity of the above passage. The following
theorem establishes its surjectivity.

Theorem 7.21 (Existence Theorem). Let C be an abstract Cartan ma-
trix of size n, and let g be the free Lie algebra with generators xi, yi, hi for
i = 1, . . . , n subject to the Serre relations. Then g is a finite-dimensional
semisimple Lie algebra with Cartan matrix C.

Note that Serre’s theorem allows lifting isomorphisms of root systems to
Lie algebra isomorphisms. Finally, we arrive at the complete classification
of finite-dimensional, complex semisimple Lie algebras.

Theorem 7.22. The above constructions give bijections(
complex semisimple

Lie algebras

)
isomorphism

∼=−→

(
abstract root

systems

)
isomorphism

∼=−→

(
abstract fundamental

systems

)
isomorphism

∼=−→

(
abstract Cartan

matrices

)
isomorphism

∼=−→

(
abstract Dynkin

diagrams

)
isomorphism

Under these bijections, simple Lie algebras correspond to irreducible abstract
root systems, irreducible abstract fundamental systems, irreducible abstract
Cartan matrices, and connected Dynkin diagrams.

Theorem 7.23 (Classification of Simple Lie Algebras). The simple Lie
algebras an, bn, cn, dn, e6, e7, e8, f4, and g2 have associated Dynkin diagrams
An, Bn, Cn, Dn, E6, E7, E8, F4, and G2, respectively. Therefore, these are the
only simple complex Lie algebras, up to isomorphism.

Any finite-dimensional complex semisimple Lie algebra is, therefore, iso-
morphic to a finite direct sum of copies of these simple Lie algebras. This
completes our classification.
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8 Representation Theory of Complex Semisimple
Lie Algebras

Let us put into practice what we learned about semisimple Lie algebras to
completely classify its representation theory. The first step is to realize that
it suffices to focus on simple g-modules:

Theorem 8.1 (Weyl). Any finite-dimensional representation of a finite-
dimensional complex semisimple Lie algebra is semisimple (i.e., completely
reducible).

The main theorem will say that simple g-modules are in one-to-one corre-
spondence with the so-called dominant weights. For the rest of this section,
let us fix a finite-dimensional complex semisimple Lie algebra g with Cartan
subalgebra h, root system Φ, fundamental system ∆, and Weyl group W .

Recall that given a representation V of g, a weight is an element λ ∈ h∗

such that Vλ = {v ∈ V | hv = λ(h)v ∀h ∈ h} ≠ 0, and Vλ is called a weight
space. We denote Π = Π(V ) for the set of weights of V . It is immediate that
for a root α ∈ Φ, we have gα(Vλ) ⊆ Vα+λ: indeed if xα ∈ gα and v ∈ Vλ, we
have

h · xα · v = [h, xα] · v+ xα · h · v = α(h)xα · v+ λ(h)xα · v = (α+ λ)(h)xα · v.

A highest weight for V is a weight λ ∈ Π (i.e., Vλ ̸= 0) such that λ +
α ̸∈ Φ for all α ∈ Φ+ (i.e., Vλ+α = 0 for all positive roots). Clearly, any
finite-dimensional representation has a highest weight. A maximal vector
(of weight λ) is an element 0 ̸= v+ ∈ Vλ which is killed by all gα for any
α ∈ Φ+, i.e., xα · v+ = 0. Clearly, any nonzero vector of highest weight is
a maximal vector, but the converse is not true. A standard cyclic module
(of highest weight λ) is a representation V which is generated by a maximal
vector of weight λ, i.e., V = U(g) · v+. The name is, of course, correct: λ is
indeed a highest weight for V . Indeed, if

n =
⊕
α∈Φ+

gα and n− =
⊕
α∈Φ−

gα,

the root space decomposition is rewritten as

g = n− ⊕ h⊕ n

(where b := h ⊕ n is the so-called Borel subalgebra of g). By the PBW
theorem, we then have

V = U(g)v+ = U(n−)U(h)U(n)v+ = U(n−)v+,
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because the U(n) part gives multiples of v+ and the U(h) part kills v+, so
all other weights of V must be lower than λ. In particular, this also implies
that dimVλ = 1, and that in the weight space decomposition V = ⊕Vβ of
V , the rest of weights are smaller, i.e., they are all of the form λ−

∑
i kiαi

with ki ≥ 0.

Proposition 8.2 (Properties). Let V be a standard cyclic module of highest
weight λ. Then:

1. V is indecomposable,

2. Any quotient of V is again a standard cyclic module of highest weight
λ,

3. V has a unique maximal (proper) submodule, and a corresponding
unique irreducible quotient,

4. If V is irreducible, then v+ is the unique maximal vector in V (up to
nonzero multiples), i.e., the maximal weight λ of V is unique.

Now the obvious question is: are there standard cyclic modules out
there? The answer is affirmative, and there is a unique one for each possible
weight λ ∈ h∗:

Theorem 8.3 (Existence and Uniqueness of Irreducible Standard Cyclic
Modules). Let λ ∈ h∗. Then there exists, up to isomorphism, a unique
irreducible standard cyclic module V (λ) of highest weight λ (which might be
infinite-dimensional).

I want to explain how to construct such a module V (λ). The key ob-
servation is that such a V (λ) = U(g)v+, viewed as a b-module, contains
a 1-dimensional submodule spanned by v+. Then: consider Dλ := Cv+
viewed as a b-module, with h · v+ := λ(h)v+ for h ∈ h and x · v+ := 0 for
x ∈ n. Now from a b-module we can pass to a g-module by the induced
representation (extension of scalars):

Z(λ) := U(g)⊗U(b) Dλ.

This module is called the Verma module of weight λ. It is not hard to see
that Z(λ) is a standard cyclic module of weight λ. Now, if Y (λ) is the
maximal proper submodule of Z(λ), then V (λ) := Z(λ)/Y (λ) is irreducible
and a standard cyclic module of highest weight λ by the above proposition.
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Corollary 8.4. Any finite-dimensional simple g-module is isomorphic to a
standard cyclic module V (λ) for some λ ∈ h∗.

Proof: Suppose V is a finite-dimensional simple g-module. Then V has
at least a maximal vector v+ of some weight λ. The submodule U(g)v+ it
generates must be, by irreducibility, the whole thing, V = U(g)v+, i.e., V is
an irreducible standard cyclic module. By the uniqueness, V ∼= V (λ). □

The remaining question is: for what λ ∈ h∗ does the representation
V (λ) happen to be finite-dimensional? Let us write ∆ = {α1, . . . , αn} for
the fundamental system. For every i, consider generators xi := xαi , yi :=
yαi , and hi := hαi of Sαi . Recall that h1, . . . , hn form a basis for h. An
integral weight is an element λ ∈ h∗ such that λ(hi) ∈ Z for all i (recall that
λ(hi) = ⟨λ, αi⟩). An integral weight is dominant if λ(hi) ∈ Z≥0 for all i.
The fundamental dominant weights are the elements of the dual basis of the
hi’s, λi(hj) = δij . We write Λ for the set (lattice) of integral weights, and
Λ+ for the set of dominant weights. It is clear that

Λ ∼= Zλ1 ⊕ · · · ⊕ Zλn and Λ+ ∼= Nλ1 ⊕ · · · ⊕ Nλn.

Also note that the Weyl group W acts on Λ, since it acts by isometries (or
just look at the reflection formula). One more definition: the root lattice is
the subgroup Λr ⊂ Λ spanned by Φ.

Theorem 8.5. Let λ ∈ h∗. Then the unique irreducible standard cyclic
module V (λ) of highest weight λ is finite dimensional if and only if λ is
a dominant weight. In such a case, the Weyl group W acts on Π(V (λ))
permuting the weights, and the weight spaces of each orbit have the same
dimension, dimVµ = dimVσµ for σ ∈W .

The upshot of the above results is:

Theorem 8.6. There is a one-to-one correspondence

Λ+ ∼=−→

(
finite-dimensional
simple g-modules

)
isomorphism

, λ 7→ V (λ).

The set of finite-dimensional g-modules is, in fact, a semiring endowed with
the direct sum and tensor product of g-modules. Given a set X, recall that
the free commutative monoid generated by X is N[X], i.e., finite expressions∑

i nixi. Since Λ+ is also a commutative monoid, let us denote the basic
elements 1 ·λ ∈ N[Λ+] as e(λ) (otherwise λ+µ could refer to λ+µ ∈ Λ+ or
1λ+ 1µ ∈ N[Λ+]). Note that N[Λ+] = N[{irreducibles}].
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Corollary 8.7. There is a commutative monoid isomorphism

N[Λ+]
∼=−→

(
finite-dimensional

g-modules

)
isomorphism

,
∑
i

nie(µi) 7→
⊕
i

niV (µi)

Now, since Λ+ is a commutative monoid, N[Λ+] is, in fact, a commutative
semiring (this is the analogous of the group ring for monoids/semirings),
with multiplication dictated by e(λ)e(µ) := e(λ + µ). Since Λ+ even has a
basis, then we have that

N[Λ+] ∼= N[Nλ1 ⊕ · · · ⊕ Nλn] ∼= N[u1, . . . , un],

the semiring of polynomials with non-negative integral coefficients. However,
the map from the preceding corollary fails to be a semiring map, since it
would imply that V (λ)⊗V (µ) ∼= V (λ+µ), which is very false in general, cf.
the Clebsch-Gordan formula for sl2. We can, however, modify the previous
monoid isomorphism and lift it to a semiring isomorphism. The observation
is that the variable ui corresponds to e(λi) which in turn corresponds to
V (λi).

Theorem 8.8. The unique semiring map

N[u1, . . . , un]
∼=−→

(
finite-dimensional

g-modules

)
isomorphism

, ui 7→ V (λi)

is an isomorphism.

Proof. The key observation is that if v, v′ are maximal weight vectors of
V (λ), V (µ) of weight λ, µ, then v⊗ v′ is a maximal weight vector of V (λ)⊗
V (µ) of weight λ + µ. Since dimV (λ)λ = 1 = dimV (µ)µ, this implies that
dim(V (λ)⊗ V (µ))λ+µ = 1, so in the decomposition of V (λ)⊗ V (µ) in irre-
ducibles, V (λ+ µ) must appear exactly once, and all other representations
occur with smaller weight.

To see surjectivity of the map, it suffices to consider irreducible repre-
sentations by the additivity of the map. Inductively, given V = V (

∑
niλi),

the image V (λ1)
⊗k1 ⊗ · · · ⊗V (λn)

⊗kn of un1
1 · · ·uknn is the sum of V (

∑
niλi)

and other irreducible with smaller highest weight, which by induction are
already in the image. Injectivity is similar.
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8.1 The Representation Ring Rep(g)

The representation ring Rep(g) of a Lie algebra g is given by the Grothendieck
construction applied to the semiring of g-modules. That is, Rep(g) is the
quotient of the free abelian group generated by finite-dimensional g-modules
modulo the subgroup spanned by the relation [V ⊕ W ] = [V ] + [W ]. Of
course, this is the same thing as the Grothendieck ring of the category of
finite-dimensional g-modules, Rep(g) = K(Modg). This becomes a commu-
tative ring with the product [V ] · [W ] := [V ⊗W ].

Applying the Grothendieck construction to the semiring isomorphism
above we get an isomorphism

Z[u1, . . . , un]
∼=−→ Rep(g).

Next we would like to give another description of the representation ring,
via the so-called formal character.

Let Λ be the lattice of integral weights, which is a free abelian group
generated by the fundamental dominant weights λi’s. Given a dominant
weight λ, we have already mentioned that V (λ) is finite-dimensional and
all weights µ of V (λ) are, in fact, integral weights, which are smaller. By
Weyl’s theorem, this implies that any finite-dimensional representation has
only integral weights, i.e., Π ⊂ Λ. We consider the integral group ring Z[Λ],
and as above, we put e(λ) for their basis elements, with product e(λ)e(µ) :=
e(λ+ µ).

Given a finite-dimensional representation V of g, the formal character
of V is

ch(V ) :=
∑
µ∈Π

dim(Vµ)e(µ) ∈ Z[Λ].

The action of the Weyl group on Λ extends to the group ring in the obvious
way, σe(λ) := e(σλ).

Proposition 8.9. The formal character satisfies the following properties:

1. It is additive, ch(V ⊕W ) = ch(V ) + ch(W ),

2. It is multiplicative, ch(V ⊗W ) = ch(V ) · ch(W ),

3. It is invariant under the action of the Weyl group, σ(ch(V )) = ch(V ),

4. Any element of Z[Λ] which is fixed by the action of the Weyl group
can be expressed, in a unique way, as an integral linear combination
of ch(V (λ)) for λ ∈ Λ+.
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Items (1) and (2) imply that there is a well-defined ring homomorphism

ch : Rep(g)→ Z[Λ],

item (3) says that the image of ch is contained in the subring Z[Λ]W of
W -invariants, so we get a ring homomorphism

ch : Rep(g)→ Z[Λ]W ,

and (4) that the previous map is a bijection, hence we obtain

Theorem 8.10. The formal character induces a ring isomorphism

ch : Rep(g)
∼=−→ Z[Λ]W .

Furthermore, by the Weyl theorem, the semiring of isomorphism classes
of finite-dimensional representations is cancellative, i.e., a g-module isomor-
phism V ⊕Z ∼= W ⊕Z implies V ∼= W . Therefore, two representations V,W
are isomorphic if and only if [V ] = [W ] in Rep(g), and by the above theorem
we get

Theorem 8.11. Two finite-dimensional g-modules V,W are isomorphic if
and only if they have the same formal character, ch(V ) = ch(W ).

Example 8.12. For sl2, the irreducible representations are V (m), m ≥ 0,
with highest weight m, so Z[Λ] = Z[Z] = Z[t, t−1], t = e(1). The generator
of the Weyl group W = Z/2 acts by t 7→ t−1, hence Z[Λ]W consists of
palindromic polynomials, i.e.,

Rep(sl2) ∼= Z[t+ t−1]

via the formal character.
Now, the weight space decomposition of V (m) gives

chV (m) = tm + tm−2 + tm−4 + · · ·+ t−m =
tm+1 − t−m−1

t− t−1
.

This implies that

ch(V (n)⊗ V (m)) = ch(V (n)) · ch(V (m))

=
(tn+1 − t−n−1)(tm+1 − t−m−1)

(t− t−1)2

=
tm+n+2 − tm−n + t−m−n−2 − tn−m

(t− t−1)2

=
tm+n+1 − t−m−n−1

t− t−1
+

tm+n−1 − t−m−n+1

t− t−1
+ · · ·+ tm−n+1 − t−m+n−1

t− t−1

= ch(V (n+m) + V (n+m− 2) + V (n+m− 4) + · · ·+ V (m− n)),
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and we obtain the Clebsch-Gordan formula, which was given above, using
the preceding theorem.

Example 8.13. For an = sln+1, we have fundamental weights λ1, . . . , λn

with corresponding irreducible standard cyclic modules V = Cn+1 the stan-
dard representation, and ΛmV for m ≤ n. So

Z[Λ] = Z[Zn] = Z[t1, t−1
1 , . . . , tn, t

−1
n ] = Z[t1, . . . , tn, (t1 · · · tn)−1] = Z[t1, . . . , tn, tn+1]/(t1 · · · tn+1−1).

The Weyl group W = Sn+1 acts permuting the indices. Hence Z[Λ]W
consists of symmetric polynomials, i.e.,

Rep(sln+1) ∼= Z[s1, . . . , sn]

where si is the i-th elementary symmetric function on t1, . . . , tn+1.

8.2 Weyl’s Character Formula, Dimension Formula, and Kostant’s
Formula

I want now to give a concrete formula for the formal character of the irre-
ducible representations. Recall that we are writing λ1, . . . , λn for the fun-
damental dominant weights. The weight δ :=

∑
i λi is called the minimal

strongly dominant weight. It can easily be seen that δ = 1
2

∑
α∈Φ+

α. Now,
given an integral weight µ ∈ Λ, define

ω(µ) :=
∑
σ∈W

sgn(σ)e(σµ) ∈ Z[Λ],

where sgn(σ) := (−1)p where p is the minimum number of reflections that
gives σ, in other words sgn(σ) = det(σ).

Theorem 8.14. Weyl’s character formula: For any dominant weight λ ∈
Λ+, the formal character of V (λ) is given by

ch(V (λ)) =
ω(λ+ δ)

ω(δ)
.

Example 8.15. For sl2, we have that e(m) = tm and hence ω(m) = tm −
t−m. On the other hand, δ = 1, hence

ch(V (m)) =
ω(m+ 1)

ω(1)
=

tm+1 − t−m−1

t− t−1
,

as we saw before.
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Theorem 8.16. Dimension formula: For any dominant weight λ ∈ Λ+, the
dimension of V (λ) is given by

dim(V (λ)) =
∏

α∈Φ+

⟨λ+ δ, α⟩
⟨δ, α⟩

=
∏

α∈Φ+

(λ+ δ, α)

(δ, α)
.

Theorem 8.17. Kostant’s formula: For any dominant weight λ ∈ Λ+ and
any integral weight µ ∈ Λ, the dimension of the weight space V (λ)µ is given
by

dim(V (λ)µ) =
∑
σ∈W

sgn(σ)p(σ(λ+ δ)− (µ+ δ)),

where for an integral weight ν, we have written p(ν) for the number of ways
that ν can be written as a sum of positive roots.
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