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I would like to give a topological point of view to the theory of principal bundles. These are im-
portant structures used in Hamiltonian mechanics (eg Marsden - Weinsten - Meyer reduction), physics
(eg Yang - Mills theory), differential geometry, etc. Excellent sources where to find a detailed exposition
from this point of view are [Swi17, ch 11] and [tD08, ch 14] .

Warning. I am a topologist, so I do not know the derivative yet! So I will not be talking about connec-
tions, curvature, etc.

1 Classifying spaces

I will start from the beginning: given a topological group G, a principal G-bundle is the data of a con-
tinuous map p : E −→ X , where E is a right G-space and p is G-invariant, satisfying the local triviality
condition that any point of X has an open neighbourhood U such that

p−1(U) U × G

U

∼=

p
pr1

where the horizontal homeomorphism is G-equivariant (G acts by right multiplication on the second
factor of U × G).

Examples 1.1 1. The trivial bundle X× G −→ X is a G-bundle for any G.

2. The Hopf fibration S3 −→ S2 is a principal S1-bundle. This map can be described as S3 ⊆ C2 −→
S2 ∼= CP1, (z, w) 7→ [z/w].

3. Real vector bundles of rank n are in one-to-one correspondence with principal GL(n, R)-bundles
(this is essentially because vector bundles are determined by their transition functions, which are
maps with values in GL(n, R)). For the complex case just replace R by C.

4. If G is discrete and E is connected, then a principal G-bundle is the same thing as a regular cover-
ing map with group of deck transformations G.

Remark 1.2 For a principal G-bundle E −→ X, every fibre is homeomorphic (as a G-space) to G. This
is a situation similar to vector bundles where every fibre is isomorphic (as a vector space) to Rn.

Given principal G bundles p1 : E1 −→ X, p2 : E2 −→ X, a bundle morphism is a G-map f : E1 −→ E2
such that p1 = p2 ◦ f . It is easily shown that this is enough for f to be an homeomorphism (check it!).

Construction 1.3 One of the operations that one cares the most when considering bundles is the pull-
back: if f : B −→ X is a continuous map and p : E −→ X is a principal G-bundle, we can consider the
pullback diagram

f ∗E E

B X

y p

f
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Explicitly,
f ∗E = B×X E = {(b, e) ∈ B× E : f (b) = p(e)} ⊆ B× E,

where the two new maps are the projections. Furthermore G acts by (b, e)g := (b, eg). This turns f ∗E
into a principal G-bundle over B.

Denote by PrinG(X) the set of isomorphism classes of principal G-bundles over X. The pullback
defines a functor

FG : Topop Set

X PrinG(X)

In the following it will be convenient to restrict ourselves to a reasonable subclass of base spaces that
will allow us to skip some technicalities, namely to CW complexes1 (this includes any compact smooth
manifold and in general most of the spaces you care!)

Warning. For the rest of these notes all base spaces will be assumed to be (or at least to have the
homotopy type of) CW complexes.

So consider instead
FG : CWop −→ Set.

Proposition 1.4 Let p : E −→ X be a principal G-bundle and let f0, f1 : B −→ X be homotopic maps. Then
the pullbacks f ∗0 E and f ∗1 E are isomorphic.

Proof. Let H : B× I −→ X be the homotopy such that H0 = f0, H1 = f1. The homotopy lifting property
for fibre bundles implies that H∗E ∼= f ∗0 E× I, which in turn means that

f ∗1 E = (H ◦ i1)∗E ∼= i∗1 H∗E ∼= i∗1( f ∗0 E× I) = ( f ∗0 E× I)|B×{1} ∼= f ∗0 E

where i1 : B −→ B× I is the inclusion at 1.

The upshot is that we get a functor

FG : hCWop −→ Set

from the (naive) homotopy category of CW complexes. A remarkable result due to Milnor is that this
functor is representable2:

Theorem 1.5 (Milnor) FG is representable, that is, there exists a space BG such that

[X, BG]
∼=−→ PrinG(X)

for any CW complex X (and the isomorphism is natural on X).

In the above statement the brackets indicate the set of homotopy classes of maps X −→ BG. By
the Yoneda lemma, this space BG is unique up to homotopy equivalence, and it is called the classifying
space for G. The Yoneda lemma also says that such a natural isomorphism is induced by pulling back
a principal bundle EG −→ BG along the maps X −→ BG. One can show that EG is unique up to
homotopy equivalence, and it is called the universal bundle.

Corollary 1.6 Any principal bundle over a contractible space is trivial.

A sensible question that I would like to address is: how do BG and EG look like? There are several
answers to this depending on the level of sophistication that the audience is willing to hear. I will
outline a pretty good one and not too sophisticated:

1Otherwise restrict to paracompact Haussdorff spaces on the base, or to numerable bundles.
2Alternatively one could show that FG satisfies the hypothesis of the Brown representability theorem, which automatically

yields the result.
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Construction 1.7 (Milnor) Given a topological group G, the n-th fold join G∗n is the space of formal
linear combinations ∑n

i=1 tigi where 0 ≤ ti ≤ 1 and ∑n
i=1 ti = 1. This is topologised as

G∗n = {((ti, gi)) ∈
n

∏
i=1

I × G : 0 ≤ ti ≤ 1,
n

∑
i=1

ti = 1}/ ∼

where the equivalence relation identifies 0gi + ∑j 6=i tjgj with 0g′i + ∑j 6=i tjgj for any gi, g′i ∈ G.

There is an obvious map G∗n −→ G∗(n+1) given by ∑n
i=1 tigi 7→ ∑n

i=1 tigi + 0gi+1 for any gi+1 ∈ G.
Then the universal bundle is defined by

EG := colimn G∗n.

This space comes with an obvious right action given by right multiplication on the g′is. We let

BG := EG/G

or alternatively
BG := colimn G∗n/G.

It is not hard to check that the projection map p : EG −→ BG is a principal G-bundle, trivialised by
the cover Ui := p({∑ tjgj : ti 6= 0}). Furthermore EG is contractible by an argument similar to the one
that shows that S∞ is contractible. It turns out that this is everything you need for a principal G-bundle
to be the universal one:

Proposition 1.8 A principal G-bundle E −→ X is universal if and only if E is contractible.

Examples 1.9 1. If G = Z/2 = S0, then (S0)∗n ∼= Sn−1 (in general Sn ∗ Sm ∼= Sn+m+1). Then
EG = S∞ and BG = S∞/(Z/2) = RP∞.

2. If G = U(1) = S1, then (S1)∗n ∼= S2n−1 . Then EG = S∞ and BG = CP∞.

3. If G = SU(2) = S3, then (S3)∗n ∼= S4n−1 . Then EG = S∞ and BG = HP∞.

The first of the previous examples is an interesting space in homotopy theory: RP∞ is a K(Z/2, 1).
Recall that for a group G and n ≥ 1, a path-connected space X is called an Eilenberg-Maclane space of
type (G, n) or a K(G, n) if

πk(X) = [Sk, X]∗ =

{
G, k = n
0, k 6= n

.

Any CW complex satisfying the above condition is unique up to homotopy equivalence.

Theorem 1.10 Let G be discrete (eg finite). Then a K(G, 1) is a classifying space for G.

Proof. Let X be a K(G, 1) and let X̃ be its universal cover. This means that X̃ is simply connected and that
has homotopy groups isomorphic to the ones of X for k > 1, which means that X is weakly contractible,
hence contractible since it is a CW complex. We conclude by 1.8.

Example 1.11 BZ = K(Z, 1) = S1 and EZ = R its universal cover. In particular for G = Z (or any
discrete group)

PrinZ(X) ∼= [X, K(Z, 1)] = H1(X, Z).

Another important property of the classifying space of a group is that it acts as a “delooping”:

Theorem 1.12 Let G be a topological group. Then ΩBG is weak homotopy equivalent to G. In particular

πk(BG) ∼= πk−1(G).

Proof. Consider the following diagram where the two rows are fibration sequences (the lower one is the
path fibration):

G EG BG

ΩBG PBG BG

By homotopying the maps if necessary I can make the diagram commutative. Applying the long
exact sequence of a fibration together with the five-lemma we get the desired equivalence.
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A great advantage of Milnor’s construction is that the passage from G to EG and BG is functorial: a
group homomorphism ϕ : H −→ G induces a continuous map

Eϕ : EH −→ EG, ∑ tihi 7→∑ ti ϕ(hi)

compatible with the group actions, so that it descents to a map Bϕ : BH −→ BG. This defines a functor

B : TopGps −→ Top.

If ϕ : H −→ G is a group homomorphism and E −→ X is a principal H-bundle, there is a well-
known way to build a principal G-bundle via the balanced product

E×H G := E× G/(eh, g) ∼ (e, ϕ(h)g).

For the universal bundles, one can show that Bϕ∗EG ∼= EH ×H G, which shows

Proposition 1.13 Let us denote by fE : X −→ BG the (homotopy class of ) map corresponding to E −→ X.
Then E×H G −→ X is the G-bundle corresponding to the composite

X
fE−→ BH

Bϕ−→ BG.

A harder problem is the following: given H ⊆ G a closed subgroup and E −→ X a G bundle, does
E come from a H-bundle? (one says that E has a reduction to H). That is, is E ∼= E′ ×H G for some
H-bundle E′ −→ X? In this language, the answer is very elegant and almost trivial:

Proposition 1.14 A G-bundle E −→ X has a reduction to H if and only if the classifying map fE lifts to BH
(up to homotopy),

BH

X BG
fE

∃

2 Geometric structures on vector bundles

Let us focus now on real vector bundles, aka principal GL(n, R)-bundles. To start with, the inclusion
O(n) ↪−→ GL(n, R) is a deformation retraction which in turn induces a (weak) homotopy equival-
ence BO(n) '−→ BGL(n, R). This means that real vector bundles of rank n are in bijection to the set
[X, BO(n)].

Example 2.1 For n = 1, O(1) = Z/2 as topological groups so the set of real line bundles is in bijection
to [X, BZ/2] ∼= [X, K(Z/2, 1)] ∼= H1(X; Z/2). Given a line bundle E over X, the cohomology class
corresponding under this bijection is known as the first Stiefel-Whitney class w1(E). There are higher
Stiefel-Whitney classes that I will describe later.

For the complex case this works almost in the same way except that now complex line bundles are
in bijection to H2(X; Z) since BS1 is a K(2, Z). In this case the corresponding integral cohomology class
is known as the first Chern class c1(E).

A model for BO(n) (at least up to homotopy equivalence) is given by the infinite Grassmannian,
the set of n-dimensional linear subspaces in R∞ = colimn Rn. This is topologised as a quotient of the
infinite Stiefel manifold. This space admits a CW structure which allows to compute its cohomology
ring:

Fact. H•(BO(n); Z/2) ∼= Z/2[w1, . . . , wn], |wi| = i.

For a vector bundle E −→ X with classifying map fE : X −→ BO(n), the i-th Stiefel-Whitney class is
wi(E) := f ∗E(wi).

Now, similarly to the way we view vector bundles as O(n)-bundles, we can view oriented vector
bundles as SO(n)-bundles. From 1.14 we directly obtain
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Proposition 2.2 Let E −→ X be a real vector bundle with classifying map fE : X −→ BO(n). Then E is
orientable if and only if fE lifts (up to homotopy) to BSO(n),

BSO(n)

X BO(n)
fE

∃

There is a beautiful story about the so-called Whitehead tower of BO(n) for which the map
BSO(n) −→ BO(n) is just the first step. The space BSO(n) can be realised as the set of oriented n-
dimensional linear subspaces of R∞ and BSO(n) −→ BO(n) as the map that forgets the orientation on
the subspaces. This map is a two-sheeted covering map, and in particular must be the universal cover
of BO(n) since π1(BSO(n)) = π0(SO(n)) = 0. So covering theory tells us that the lifting in 2.2 exists if
and only if ( fE)∗π1(X) ⊆ p∗π1(BSO(n)) ∼= 0, which happens precisely if ( fE)∗ : π1(X) −→ π1(BO(n))
is the trivial map. It turns out that this happens precisely when the first Stiefel-Whitney class vanishes:

Proposition 2.3 A real vector bundle of rank n is orientable if and only if w1(E) = 0.

Proof. Consider the following chain of isomorphisms:

H1(X; Z/2) ∼= Hom(H1(X; Z/2), Z/2) ∼= Hom(π1(X), Z/2) ∼= Hom(π1(X), π1(BO(n))).

Here we have used the universal coefficients theorem for the first iso, the universal property of the
abelianisation for the second one and π1(BO(n)) ∼= π0(O(n)) = Z/2 for the first one. Because of this
sequence of isomorphisms is natural on X we obtain that w1(E) corresponds precisely to ( fE)∗.

As stated above this is just the beginning of a bigger tower, called the Whitehead tower or tower of
connected covers of BO(n), which looks like

...

B5Brane(n)

BString(n)

BSpin(n)

BSO(n)

BO(n)

One can argue in a homotopy-theoretical way to obtain obstruction classes for the existence of geo-
metric structures on vector bundles, as we did before for the orientability. For instance, one can show
that an orientable vector bundle E −→ X has a spin structure if and only if w2(E) = 0. For string struc-
tures, the criterion is harder, involving fractional Pontrjagin classes and Chern characters, see [SSS09].
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