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1 Lecture 1 (7/2)

The Poincaré Conjecture We start by motivating our study of 3- and 4-dimensional man-
ifolds with the Poincaré conjecture. A closed manifold will mean a compact manifold without
boundary.

Conjecture 1.1. Suppose a closed 3-manifold M has trivial first homology. Then M – S3.

Poincaré himself proved this to be false, through the construction of the Poincaré homology
sphere Sp. This object is constructed as follows.

1. Construct a dodecahedron as a CW complex.

2. Glue opposite faces with a twist of 5π{3.

Why does this provide a counter example? Because π1pSpq – BI, the binary icosahedral group,
and the commutator subgroup of BI is itself, which implies that its abelianisation produces the
trivial group. As we shall later see, the first homology group is isomorphic to the abelianisation
of the fundamental group. But the fundamental group is a topological invariant, so Sp cannot
be homeomorphic to S3. In light of this realisation, Poincaré corrected his initial conjecture to
the form in which we know it today, which was proven to be correct:

Theorem 1.1 (The Poincaré Conjecture). A closed n-manifold M is homotopy equivalent to
Sn if and only if M – Sn.

TBA: timeline of proofs of the Poincaré conjecture.

Using Knots to Study Manifolds

Definition 1.2. An isotopy on a manifold M is a continuous family of homeomorphisms from M
to M . That is, a continuous map h : r0, 1sˆM Ñ M such that ht : M Ñ M is a homeomorphism
for all t P r0, 1s.

In what is to follow, we will not distinguish between an embedding f , and its image in the
target space.

Definition 1.3. A link is an equivalence class of smooth embeddings f :
Ůc
k“1 S

1 Ñ S3. The
number c is called the number of link components. We declare an equivalence relation on the
set of links by fK „ fL if and only if there exists an isotopy ht : S

3 ˆ I Ñ S3 such that the
following diagram commutes:

Ů

S1 S3

S3

fL

fK
ht

Furthermore, we require that h0pKq “ K and h1pKq “ L. RvD: Where
K and L are
the images of
fK and fL?
Bram: Yes,
I mentioned
above that we
don’t distin-
guish between
the maps and
the images (for
embeddings)

We want to use knots to encode 3- and 4-manifolds. Why knots? Attaching a disk D2 Ñ M
means embedding the boundary S1 Ñ M , which naturally produces a knot in M . This is one
way in which knot theory may arise in the study of manifolds. Another way is by performing
surgery on 3-manifolds. Let K Ă M be a link. Let T pKq be a tubular neighourhood, which in
this case means it is homeomorphic to a union of solid tori. Then we can glue back more solid
tori, in a possibly different way – thus obtaining a new 3-manifold.

Theorem 1.4 (Lickorish–Wallace). Every closed 3-manifold is obtained by performing surgery
on link complements in the manner described above, for M “ S3.
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Definition 1.5. There are three types of Reidemeister moves, namely:

1. Twist and untwist in either direction.

2. Move one loop completely over the other.

3. Move a string completely over or under a crossing.

The Reidemeister moves are illustrated in Figure 1. Note that in move 1 and 3 we skip over the
cases with a different type of crossing (i.e. positive instead of negative or vice versa).

Figure 1: The three types of Reidemeister moves

Theorem 1.6 (Reidemeister). Two link diagrams L and L1 define the same link class if and
only if L and L1 are connected by a sequence of Reidemeister moves.

Definition 1.7. In an oriented link diagram, there are two types of crossings. We denote a
positive crossing with a `-sign and a negative crossing with a ´-sign. They are illustrated in
Figure 2.

Figure 2: A positive crossing versus a negative crossing

So, if we cross over from left to right we have a positive crossing, but if we cross over from right
to left we have a negative crossing.

Definition 1.8. Let L be an oriented link diagram with components L1, L2, . . . , Ln. The linking
number of two distinct components Li, Lj is defined as

LkpLi, Ljq “
1

2

ÿ

c

signpcq,

where we run over all crossings c between Li and Lj and signpcq refers to the type of crossing
as defined in Definition 1.7. For the entire link L, we define the linking number as the sum of
the linking numbers of all pairs of components:

LkpLq “
ÿ

1ďiăjďn

LkpLi, Ljq,

Ruben IJ: You
multiply by
1/2 twice, so
now every sign
is being mul-
tiplied by 1/4.
Is this correct?
It seems a lit-
tle strange.
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2 Homology (Bram Brongers)

We will give a brief overview of (cellular) homology. After its definition, we shall review some
basic facts, give geometric intuition, explain a few computational tools and give several examples.

The Definition of Cellular Homology Homology comes in different flavours. Usually, one
is first introduced to singular homology. However, the singular homology groups of spaces are
very hard to compute in general. That is why we want to develop cellular homology - because
it provides a convenient setting for computations, when combined with some of the properties
to be explained later on. Cellular homology is defined for CW complexes, so we will first state
their definition as a reminder.

Definition 2.1. A CW complex is a a topological space X together with a sequence of
subspaces X0 Ď X1 Ď . . . such that YiXi “ X, which satisfies the following.

1. We obtain Xn from Xn´1 by attaching n-cells.

2. U Ď X is open if and only if U XXn Ď Xn is open for each n.

The topological space Xn is called the n-skeleton of X.

Obtaining Xn from Xn´1 by attaching n-cells means that there is a homeomorphism

Xn – Xn´1 Yf Jn ˆDn

where Jn is an indexing set (possibly infinite) and f : Jn ˆ BDn Ñ Xn´1 is an attaching map.

Remark 2.2. We recall that
X Yf Y :“ pX

ğ

Y q{ „

where fpaq „ a, for f : A Ñ X with A Ď Y . In the present case, A “ Jn ˆ BDn, X “ Xn´1 and
Y “ Jn ˆDn.

The cardinality of Jn is the number of n-cells in X. There is a category of CW complexes,
in which we can consider two natural kinds morphisms. The first kind is just continuous maps
f : X Ñ Y . The second kind is cellular maps, which are continuous maps between CW
complexes such that fpXnq Ď Yn.

Remark 2.3. As is proved e.g. in the Mastermath Algebraic Topology 1 lecture notes, every
continuous map between CW complexes is homotopic to a cellular map. Because homology will
turn out to be homotopy invariant, we can always assume that we are dealing with a cellular
map for the purposes of homology theory.

CW complexes are "nice" model spaces, in the sense that we can obtain information about
e.g. manifolds from CW complexes. This is because, as mentioned previously, homology (and
various other theories) are homotopy invariant, and every compact manifold is homotopy equiva-
lent to a CW complex. Hence, we can transfer questions about the topology of these manifolds to
CW complexes, where they are much easier to answer, due to convenient tools for computations
such as cellular homology. To define it, we first need some more terminology.

Definition 2.4. A chain complex is a sequence of abelian groups

. . .
Bn`2
ÝÝÝÑ Cn`1

Bn`1
ÝÝÝÑ Cn

Bn
ÝÑ Cn´1

Bn´1
ÝÝÝÑ . . .

such that Bk ˝ Bk`1 “ 0. We denote a chain complex by pC‚, Bq. Given a chain complex, we
define its k-th homology group by

HkpC‚q “
ker Bk

im Bk`1

4



Exercise 2.5. Given a chain complex pC‚, Bq, show that HkpC‚q “ 0 for all k if and only if
the chain complex is exact. That is, ker Bn “ im Bn`1. Thus, the homology of a chain complex
measures the obstruction to exactness.

For a CW complex, we define CnpXq to be the free abelian group on Jn generators, so each
n-cell is a generator of CnpXq. We want to turn this collection into a chain complex, so we can
take its homology. Hence we need to construct a differential (or boundary operator). To this
end, we make the following definition.

Definition 2.6. Let f : Sn Ñ Sn be a smooth map. Then we define an integer number called
the degree of f by

ż

Sn

f˚ω “ deg f
ż

Sn

ω

where ω is the standard volume form on Sn. Note that we are implicitly assuming that the
sphere is oriented, so that there is no ambiguity about the sign of the integral.

Remark 2.7. Proofs of these two facts below can be found in J. Lee’s "Introduction to Smooth
Manifolds".

1. By a theorem due to H. Whitney, every continuous map between smooth manifolds is
homotopic to a smooth map. The usual definition of the degree of a map (in terms
of singular homology) is a homotopy invariant, and therefore these definitions coincide
(theorem 6.26).

2. It is not at all obvious why deg f is an integer (theorem 17.35). The usual definition
through singular homology would illuminate this fact. We just accept it as a given. The
cited proof uses de Rham cohomology. However, since de Rham cohomology is independent
of what we develop here, there is no tautology.

Now we move on the definition of our boundary operator/differential, for the cellular ho-
mology of a CW complex X. Let α P Jn, β P Jn´1 and let eαn be an n-cell, while eβn´1 is an
pn´ 1q-cell. We assume that all cells are oriented. Let fα be the attaching map of of eαn. Then
we can consider the sequence of maps

fαβ : Sn´1 – Beαn
fα
ÝÑ Xn´1

π
ÝÑ Xn´1{pXn´1zeβn´1q – Sn´1

Here, fα is the attaching map, and π is the quotient map which collapses everything except
eβn´1 to a point. Then fαβ : Sn´1 Ñ Sn´1 has a mapping degree, which is an integer. For the
case n “ 2, however, this is just the winding number of the map fαβ : S1 Ñ S1.

Definition 2.8. Let α P Jn, so that eαn is one of the generators of CnpXq. We define

Bnpeαnq “
ÿ

βPJn´1

deg pfαβqeβn´1 P Cn´1pXq

This map Bn : CnpXq Ñ Cn´1pXq is extended by Z-linearity to a group homomorphism.

Exercise 2.9. Work out concretely how to formulate the degree of the attaching map of a 1-cell.
Start by giving the interval r0, 1s an orientation.

The following proposition can be found in e.g. A. Hatcher’s book (Cellular Boundary Formula
on page 140).

Proposition 2.10. The map Bn : CnpXq Ñ Cn´1pXq satisfies Bn ˝ Bn`1 “ 0, and hence makes
pC‚pXq, Bq into a chain complex.
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We remark that C‚ : CW Ñ ChZ is in fact a covariant functor from the category of CW
complexes to the category of chain complexes of Z-modules (i.e. abelian groups), if we restrict
the morphisms between CW complexes to cellular maps.

Definition 2.11. Let pC‚, Bq be the chain complex obtained from a CW complex X as above.
Then we define the n-th homology group of X (with coefficients in Z) by HnpXq :“ HnpC‚pXqq.

Suppose that dimX “ n ă 8. Then it follows immediately that HkpXq “ 0 for all k ą n
and k ă 0. We will denote H‚pXq :“ ‘k“0HkpXq (also if dimX “ 8).

Basic Properties We will now explain some of the basic properties of homology: induced
maps, functoriality, homotopy invariance, excision, the long exact sequence and the Euler char-
acteristic. Let eαn be an n-cell in X and hβn´1 an pn ´ 1q-cell in Y . Then we can consider the
sequence of maps

Sn´1 – Bαn Ñ Xn´1
f
ÝÑ Yn´1 Ñ Yn´1{pYn´1zhβn´1q – Sn´1

Thus, the map f induces a map f˚ : H‚pXq Ñ H‚pY q, by the same construction we gave for the
differential/boundary operator above, and we call f˚ the induced map (with respect to f).

Theorem 2.12 (Functoriality of homology). The map H‚ : CW Ñ GrAb is a covariant functor
from the category of CW complexes to the category of (graded) abelian groups.

What this tells us in more down-to-earth terms, is that the operation X ÞÑ H‚pXq assigns
a graded abelian group H‚pXq to each CW complex X, and a (graded) group homomorphism
f˚ : H‚pXq Ñ H‚pY q for every continuous map f : X Ñ Y , such that

1. pg ˝ fq˚ “ g˚ ˝ f˚ for continuous maps X f
ÝÑ Y

g
ÝÑ Z.

2. id˚ “ id.

As alluded to previously, homology satisfies the following very convenient invariance property.

Theorem 2.13 (Homotopy Invariance of Homology). Let f, g : X Ñ Y be continuous maps
which are homotopic. Then f˚ “ g˚.

This proof can be found in any textbook that touches upon algebraic topology. The following
corollary is immediate, and is of crucial importance for many proofs and computations. We recall
that two spaces X and Y are homotopy equivalent if there exist continuous maps f : X Ñ Y
and g : Y Ñ X such that f ˝ g » idY and g ˝ f » idX .

Corollary 2.14. Homotopy equivalent spaces have isomorphic homology groups.

To see the usefulness of this result in action, we will use it later to show that the dimension
of a manifold is well-defined. Next, we want to discuss the long exact sequence of a pair of
topological spaces pX,Aq, i.e. A Ď X. To do this, we will use a more general result.

Definition 2.15. Let pC‚, Bq and pC 1
‚, B

1q be chain complexes. Then a morphism of chain
complexes φ : C‚ Ñ C 1

‚ is a collection of group homomorphisms φn : Cn Ñ C 1
n which makes the

following diagram commute:

Cn`1 Cn

C 1
n`1 C 1

n

Bn`1

φn`1 φn

B1
n`1
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With this definition in hand, it makes sense to talk about the kernels and images of morphisms
of chain complexes (or chain maps), and in particular, to talk about exact sequences of chain
complexes.

Theorem 2.16 (The Long Exact Sequence in Homology). Let pC‚, Bq, pC 1
‚, B

1q and pC‚, Bq be
chain complexes, and suppose that

0 Ñ C 1
‚

φ
ÝÑ C‚

ψ
ÝÑ C‚ Ñ 0

is an exact sequence of chain complexes. Then there is an exact sequence in homology

¨ ¨ ¨ Ñ Hn`1pC 1
‚q

φ˚
ÝÝÑ Hn`1pC‚q

ψ˚
ÝÝÑ Hn`1pC‚q

δ
ÝÑ HnpC 1

‚q Ñ . . .

The group homomorphism δ is called the connecting homomorphism.

The proof of this theorem is commonly referred to as a "routine exercise" in "diagram
chasing", and it can be found in Serge Lang’s "Algebra" (Theorem XX.2.1). We want to apply
this to the situation mentioned above, i.e. that of a topological pair pX,Aq, where we assume
that A is a subcomplex. We will refer to this as a pair of CW complexes. In this situation,
we get a short exact sequence of chain complexes

0 Ñ C‚pAq
ι

ÝÑ C‚pXq
π
ÝÑ C‚pXq{C‚pAq Ñ 0

Definition 2.17. The homology of the complex C‚pXq{C‚pAq :“ C‚pX,Aq is called the ho-
mology of X relative to A, or relative homology for short. It is denoted by H‚pX,Aq.

The relative homology tells us precisely how much of the homology of X, is captured by
the homology of A. Indeed, H‚pX,Aq “ 0 ðñ H‚pAq – H‚pXq ðñ ι˚ is an isomorphism,
which will be exemplified by the next corollary.

Corollary 2.18. Let pX,Aq be a pair of CW complexes. Then the relative homology H‚pX,Aq

naturally fits into an exact sequence

¨ ¨ ¨ Ñ Hn`1pAq
ι˚
ÝÑ Hn`1pXq

π˚
ÝÑ Hn`1pX,Aq

δ
ÝÑ HnpAq Ñ . . .

Next, we wish to discuss an incredibly useful tool, known as the Mayer-Vietoris sequence.

Theorem 2.19 (Mayer-Vietoris). Let U, V Ď X be subcomplexes such that U Y V “ X and
U X V is a subcomplex. Then the following sequence is exact:

¨ ¨ ¨ Ñ HnpU X V q
ιU˚ ‘ιV˚
ÝÝÝÝÑ HnpUq ‘HnpV q

iU˚ ´iV˚
ÝÝÝÝÑ HnpXq

δ
ÝÑ Hn´1pU X V q Ñ . . .

where ι and i denote the sensible inclusion maps, and δ is the connecting homomorphism.

Remark 2.20. The connecting homomorphism shows up again above, because of the fact that
the Mayer-Vietoris sequence is induced by an exact sequence of chain complexes. However, the
exact sequence in question is not

0 Ñ C‚pU X V q Ñ C‚pUq ‘ C‚pV q Ñ C‚pXq Ñ 0

See the Mastermath Algebraic Topology 1 notes on "The Small Simplices Theorem" for details.

Exercise 2.21. Give the n-sphere a suitable CW structure, and use it to compute HkpSnq for
all k, n ě 0 by induction on n and the Mayer-Vietoris sequence.

The final theorem we want to include, is the excision theorem. The tools used in the proof
of this theorem are somewhat beyond the scope of a brief explanation, so we just cite it and
refer to A. Hatcher’s book (Theorem 2.20).
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Theorem 2.22 (The Excision Theorem). Let U Ă A Ď X such that pX,Aq is a pair of CW
complexes, and U Ď intpAq. Then there is an isomorphism

H‚pX,Aq – H‚pXzU,AzUq

Remark 2.23. For this to be well-defined in the context of cellular homology, we of course need
pXzU,AzUq to be a pair of CW complexes. This is quite restrictive, and is not necessary in the
context of singular homology, where the theorem also holds.

You will have the opportunity to use these tools in the following computations.

Exercise 2.24. Give the torus T 2 :“ S1 ˆS1 a CW structure and compute its homology. What
about the solid torus T2? Hint: for the latter, use homotopy invariance.

Exercise 2.25 (Homology of Knot Complement). Let K : S1 ÝÑ S3 be a knot, and let T pKq

be a tubular neighbourhood. Then we can pick T pKq – T2. Let M “ S3zT pKq.

1. Find a suitable cover for M which makes it convenient to use the Mayer-Vietoris theorem
for the computation of H‚pMq.

2. Assume that the connecting homomorphism H3pS3q – Z δ
ÝÑ H2pT 2q – Z is an isomor-

phism. Use this to calculate H‚pMq.

We will end this section with the definition of an important concept, namely the Euler
characteristic. Suppose that dimX “ n. We know frow from linear algebraic considerations,
namely the rank-nullity theorem, that the following holds:

n
ÿ

k“0

p´1qkrank HkpXq “

n
ÿ

k“0

p´1qkrank CkpXq “

n
ÿ

k“0

p´1qk|Jk|

Exercise 2.26. Prove the first equality above.

Definition 2.27. The Euler characteristic χpXq of a topological space X is defined by

χpXq “

n
ÿ

k“0

p´1qkrank HkpXq

Hence, for a CW complex, the Euler characteristic coincides with the alternating sum of the
k-cells that are used to construct it. As we will see later in the course, the Euler characteristic
completely characterises 2-dimensional compact orientable manifolds up to homeomorphism.

Geometric Intuition and Examples We have now given the definition of cellular homol-
ogy, and several of the basic properties and computational tools. Let us now indicate why we
should care enough about homology, to go through the trouble of developing this machinery
and computing it. For the concerned reader: we will give the intuition that is based on singular
homology, and it may not necessarily be apparent that cellular homology is related to this. How-
ever, the two homologies are isomorphic, if we take singular homology with integer coefficients,
so this is a perfectly valid thing to do. For those not familiar with singular homology, ignore the
remark above.

Proposition 2.28. Suppose that the number of components of X is m. Then H0pXq – Zm.

For the case n “ 1, we have a similarly intuitive and useful result. Let rG,Gs denote the
commutator subgroup of a group G.
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Proposition 2.29. Let π1pXq be the fundamental group of X, and assume X to be path-
connected. Then

H1pXq – π1pXq{rπ1pXq, π1pXqs

That is, H1pXq is the abelianisation of the fundamental group π1pXq.

The proof of the proposition can be found e.g. in J. Lee’s "Introduction to Topological
Manifolds" (Theorem 13.14). The condition of path-connectedness will, in practice, not add any
difficulties. This is because we shall investigate manifolds, for which connectedness implies path-
connectedness. When studying manifolds, we can always look at the individual components in
isolation.

Now, let us recall some more terminology from group theory, namely the rank of an abelian
group G. Let Gtor denote the torsion subgroup. Then G{Gtor – Zk for some integer k, called
the rank of G.

Proposition 2.30. Let n ą 0. The rank of HnpXq is the number of n-dimensional "holes" in
X.

The notion of an n-dimensional hole is not a "formal" one, and this is just to give some
intuition about homology.

Examples 2.31. Let us explain what we mean by the proposition above in dimensions we can
actually visualise.

1. A (simple undirected and connceted) graph can be given a natural CW complex structure,
taking a 0-cell for every vertex, and a 1-cell for every edge. Then H1pXq – Zm, where m
is the number of cycles in the graph X. The way to obtain this result, is to use a spanning
tree T , i.e. a subgraph which is a tree (contains no cycles) and contains every vertex of
the original graph. An example is given below.

Denote the set of edges in X by E, and the set of edges in T by ET . Let Λ “ EzET . Then
H1pXq – ZrΛs. Geometrically, this means that each edge that is left out of the spanning
tree, gives us a non-contractible loop which represents a generator of the first homology
H1pXq.

2. Let X “ Σg be the compact orientable surface of genus g (which is unique up to homeo-
morphism, as we shall see later in the course). Then H1pΣgq – Z2g. Generators are given
by representatives of the homotopy classes of non-contractible loops in Σg. To see this,
consider the follow CW structure (for the case g “ 2).
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In much the same fashion, we can find a polygonal representation for arbitrary Σg, we
merely need to take the regular 4g-sided polygon and identify the edges in a suitable
manner. As can be seen above on the right, the attachment map runs through each edge
twice, in opposite orientation. Hence, the winding number of the attaching map for each
circle (in the figure on the left) is 1 ´ 1 “ 0. It follows that deg fαβ “ 0 for all β P J1.
Consequently, the cellular chain complex is:

0 Ñ Z ¨0
ÝÑ Z2g ¨0

ÝÑ Z Ñ 0

From which we easily deduce that

HkpΣgq “

$

’

&

’

%

Z if k “ 0, 2

Z2g if k “ 1

0 else

3. Finally, and more generally, we have

HkpSnq –

#

Z if k “ 0, n

0 else

which we can also reasonably interpret as "the n-dimensional sphere has one n-dimensional
hole, and no other holes". This result is an easy consequence of our definition of homology,
as the chain complex looks like

0 Ñ Z Ñ 0 Ñ ¨ ¨ ¨ Ñ 0 Ñ Z Ñ 0

Namely, we can use one 0-cell, and one n-cell.

But what about the torsion subgroup? This is where matters become a bit more subtle, and
goes to show why homology with integer coefficients gives more information than homology with
coefficients in e.g. the real numbers. To gain some understanding of the meaning of the torsion
part of a homology group, we will look at the projective plane RP 2. We give it the following
CW structure:
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This CW structure consists of one 0-cell, one 1-cell and one 2-cell. First form a circle, then
attach the disk with a degree 2 map. Note the map has degree 2 because we identify opposite
points on the boundary of the disk. The cellular chain complex becomes

0 Ñ Z ¨2
ÝÑ Z ¨0

ÝÑ Z Ñ 0 ùñ HkpRP 2q –

$

’

&

’

%

Z if k “ 0

Z{2Z if k “ 1

0 else

What is the significance of the torsion in H1pRP 2q? It means the following (see the illustration
below). Picture RP 2 as being the disk with antipodal points on the boundary identified. Drawing
a straight line through the origin gives us a loop. This loop is not contractible. Indeed, we would
have to make the ends of the line, on the edge of the disk, meet. But this is not possible, because
every time we perturb one end, the opposite ends moves accordingly, to remain directly opposite.
However, if we concatenate this loop with itself, we do get a contractible loop. This is precisely
why we get the integers modulo two, rather than some other integer. Generalising this intuition
to higher dimensions may be somewhat challenging. Below is an illustration of the procedure
used to contract the concatenated path to a loop. Note that in the first step of the procedure,
we actually have two lines, since we concatenated the line with itself.

Exercise 2.32. Compute the homology of complex projective space CP 1, and use this intuition
to compute the homology of CPn.

As a final note, we want to mention some applications to manifolds, since they are to be
the primary subject of this course. Suppose that dimM “ n for some manifold M that we are
interested in. We will assume that M is compact. Then the following proposition tells us that
homology gives information about the orientability of M .

Proposition 2.33. HnpMq “ 0 ðñ M is non-orientable. Conversely, HnpMq – Z ðñ

M is orientable.

As we know, RP 2 is indeed non-orientable, which is reflected by the homology computation
above, which revealed that H2pRP 2q “ 0, whereas H2pCP 1q – Z, so complex projective space
is orientable. Finally, we will prove that the dimension of a manifold is well-defined.

Theorem 2.34. Suppose that Rn – Rm. Then m “ n.

Proof. We use the fact that homology is homotopy invariant, and that Rnzt0u » Sn´1. Suppose
without loss of generality that n ą m and that Rn – Rm. Then also Rnzt0u – Rmzt0u. Conse-
quently, we find H‚pRnzt0uq – H‚pRmzt0uq. By homotopy invariance, this implies H‚pSn´1q –

H‚pSm´1q. However, we know that Hn´1pSn´1q “ Z, while Hn´1pSm´1q “ 0. Contradiction.
So m “ n. Thus, the dimension of a manifold is well-defined.
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3 Homotopy groups (Ruben IJpma)

Recall that two maps f, g : X Ñ Y of topological spaces are called homotopic relative to A Ď X
if there exists a continuous family Ft : X Ñ Y , where t P r0, 1s,1 with the two properties (i)
F0 “ f and F1 “ g, (ii) Ft|A “ f |A “ g|A for all t. The family Ft is called a homotopy from f
to g relative to A, and we write f »A g. The relation »A is an equivalence relation. The set of
homotopy classes relative to A is denoted as

rX,Y sA :“ tcontinuous maps f : X Ñ Y u{ »A .

Further recall that if X0 Ď X1 Ď ¨ ¨ ¨ Ď X and Y0 Ď Y1 Ď ¨ ¨ ¨ Ď Y are CW-structures, then a
continuous map f : X Ñ Y is called cellular if fpXnq Ď Yn for all n. Moreover, A Ď X is called
a subcomplex of X if Xn`1 ´ pAXXnq is a union of open pn` 1q-cells, for all n.

Theorem 3.1 (Cellular approximation theorem). Let X and Y be CW-complexes as above,
and let some n-skeleton A Ď X be a subcomplex. If f : X Ñ Y is continuous and f |A is cellular,
then f is homotopic relative to A to a cellular map. J: A is just a

subcomplex
right? (not
sure what the
n-skeleton part
means)

Definition 3.2. Fix base points s0 P Sn and x0 P X0. Then denote

πnpX,x0q :“ rpSn, s0q, pX,x0qss0 .

For n “ 1, this set coincides with the fundamental group of X at x0. For n ě 2, we will
show that πnpX,x0q likewise admits a group structure. In contrast to the fundamental group,
this group structure will always be commutative.

Actually, it is already possible to compute πnpSm, x0q for n ă m. For this, we need to
consider maps f : pSn, s0q Ñ pSm, x0q. We view the spaces Sn, Sm as CW-complexes X,Y as
follows:

Xi “ ts0u for 0 ď i ă n,Xi “ Sn for i ě n,

Yi “ tx0u for 0 ď i ă m,Yi “ Sm for i ě m.

The restriction f |X0 is certainly cellular, so f is homotopic relative to ts0u to a cellular map g,
by the cellular approximation theorem. It follows that gpSnq “ gpXnq Ď Yn “ tx0u. So, f is
homotopic to the constant map s ÞÑ x0. This argument shows that πnpSm, x0q consists only of
a single element. When n ě m, the situation is vastly different. We shall return to the special
case m “ n later.

Exercise 3.3. Show that for n “ 0, the elements of π0pX,x0q can be viewed as the path
components of X.

To define the group operation on πnpX,x0q, let In “ r0, 1sn be the n-dimensional cube.
Appropriately identifying Sn with In{BIn allows us to identify the elements of πnpX,x0q with
the elements of

rpIn, BInq, pX,x0qsBIn .

For 1 ď i ď n, define the ˚i-product of two ‘balloons’ α, β : pIn, BInq Ñ pX,x0q by

pα ˚i βqpt1, . . . , tnq :“

#

αpt1, . . . , ti´1, 2ti, ti`1, . . . , tnq if 0 ď ti ď 1
2 ,

βpt1, . . . , ti´1, 2ti ´ 1, ti`1, . . . , tnq if 1
2 ď ti ď 1.

Moreover, set rαs ˚i rβs :“ rα ˚i βs. We want to show that ˚i is a well-defined operation, with
identity being the homotopy class of the constant map sending In to x0, and inverses rαis defined
by αipt1, . . . , tnq “ αpt1, . . . , ti´1, 1 ´ ti, ti`1, . . . , tnq. Since only the ith coordinate is involved
in all of the expressions, the proof of these facts is the same as the proof for the existence of the
fundamental group.

1Here, continuous family means that the map X ˆ r0, 1s Ñ Y given by px, tq ÞÑ Ftpxq is continuous.
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Exercise 3.4. Find a quotient map q : In Ñ Sn such that the only non-trivial fibre is q´1ps0q “

BIn.

Lemma 3.5 (Eckmann-Hilton). Let M be a set with two binary operations ˚ and ˝ that both
admit a two-sided unit element and satisfy pa ˝ bq ˚ pc ˝ dq “ pa ˚ cq ˝ pb ˚ dq for all a, b, c, d P M .
Then the two operations coincide, and they are associative and commutative.

It is easy to check that in fact pα˚iβq˚j pγ ˚i δq “ pα˚j γq˚i pβ ˚j δq for all i, j (without taking
homotopy classes). Also, we argued a little earlier that a unit element exists for the homotopy
classes. Therefore, all ˚i-products are identical, and they are associative and commutative. This
finishes the construction of the group operation on πnpX,x0q.

Exercise 3.6. Prove Lemma 3.5.

The nth homotopy group of a space X depends in general on its basepoint x0. Since any
map pSn, s0q Ñ pX,x0q must have image lying in the path component of x0, the entire group is
determined by the path component of x0. Furthermore, if γ is a path in X from y0 to x0, then
there is an induced isomorphism γ˚ : πnpX,x0q Ñ πnpX, y0q.

In contrast, the nth homology group of a CW-complex X depends on all path components.
Still, the homotopy groups can be related to the homology groups by what is known as the
Hurewicz map, described as follows. By definition of cellular homology, the group HnpSn;Zq is
generated by rens, where en is a single n-cell. Now, if α : pSn, s0q Ñ pX,x0q is any map, then
we consider the induced map α˚ : H‚pSn;Zq Ñ H‚pX;Zq described earlier. From here, we have
a well-defined map, called the Hurewicz map

hn : πnpX,x0q Ñ HnpX;Zq

rαs ÞÑ α˚prensq.

This map is always a group homomorphism. If X is path connected, then h1 is surjective, and
its kernel equals the commutator subgroup of the fundamental group. (See Proposition 2.29.)
For n ě 2, we have

Theorem 3.7 (Hurewicz theorem (absolute version)). Suppose that πipX,x0q “ 0 for i ă n.
Then the Hurewicz map hn : πnpX,x0q Ñ HnpX;Zq is a group isomorphism.

Corollary 3.8. For n ě 2, we have πnpSn, s0q – Z.

Exercise 3.9. Check that the map hn is a well-defined group homomorphism. (Hint: for
well-definedness, use the homotopy invariance of homology.) J: This seems

pretty hard to
be an exercise
(!)We finish our introduction of homotopy groups with the Van Kampen theorem, which is a

tool to compute the fundamental group of many examples of spaces. The fundamental group
often occurs as a free product of multiple groups. For groups pG1, e1q, pG2, e2q, define their free
product G1 ˚ G2 as follows. Assume that G1 X G2 “ ∅ , otherwise consider Gj ˆ tju with J: Unless

G1, G2 are
subgroups of
another group,
it doesn’t
make sense to
consider their
intersection.
The union you
use later is the
disjoint union.

appropriately modified operations. With G‚
j “ Gj ´ teju, set

G1 ˚G2 “

8
ď

n“0

tf : t1, . . . , nu Ñ G‚
1 YG‚

2 | for all i, fpiq P Gj ùñ fpi` 1q R Gju.

Let pf1, . . . , fnq, pg1, . . . , gmq P G1 ˚G2, then the following defines a group structure on G1 ˚G2:

f ˚ g “ pf1, . . . , fn´1, fng1, g2, . . . , gmq if fn, g1 P Gj , fng1 ‰ ej ,

f ˚ g “ pf1, . . . , fn´1, g2, . . . , gmq if fn, g1 P Gj , fng1 “ ej ,

f ˚ g “ pf1, . . . , fn, g1, . . . , gmq else.

13



Figure 3: Right: R3 deformation retracts onto S2 _ pS1 ˆ S1q. Left: image of T in S1 ˆ S1.
(Credit: Hatcher.)

J: fi “ fpiq?
I suppose the
n-tuple is the
image of f .

Taking free products of multiple groups is associative and commutative, allowing for the likes
of G1˚¨ ¨ ¨˚Gn. Free products have the property that when ϕi : Gi Ñ H are any homomorphisms,
there exists a unique extension homomorphism Φ : G1 ˚ ¨ ¨ ¨ ˚Gn Ñ H with Φppgiqq “ ϕipgiq for
all gi P Gi.

Furthermore, we will make use of the following notation. For a map f : pX,x0q Ñ pY, y0q,
there is a well-defined induced homomorphism of homotopy groups

f˚ : πnpX,x0q Ñ πnpY, y0q

rωs ÞÑ rf ˝ ωs.

Suppose that X is the union of path-connected open subsets U1, . . . , Un, all containing the same
basepoint x0. Let jα : Uα Ñ X and iαβ : Uα X Uβ Ñ Uα denote the inclusions, α, β “ 1, . . . , n.
For the induced homomorphisms jα˚ : π1pUα, x0q Ñ π1pX,x0q, we consider the unique extension
Φ : π1pU1, x0q ˚ ¨ ¨ ¨ ˚ π1pUn, x0q Ñ π1pX,x0q. In the free product, we will consider elements
of the form piαβ˚ pωq, iβα˚ pωq´1q, for ω P π1pUα X Uβ, x0q. That is, words consisting of rωs as a
homotopy class in Uα, followed by rω´1s as a homotopy class in Uβ .

Theorem 3.10 (Van Kampen). With the hypothesis stated above, Φ is a surjective homomor-
phism. If moreover all triple intersections Uα X Uβ X Uγ are path connected, then the kernel of
Φ is generated by all elements of the form piαβ˚ pωq, iβα˚ pωq´1q.

J: I would sug-
gest to restate
the theorem
only for the
case where
your space can
be covered by
two open sub-
sets. Can you
write a for-
mula for the
fundamental
group of the
total space in
terms of gen-
erators and
relations?

Examples 3.11.

1. A classical instance of the Van Kampen theorem is the bouquet of circles X “
Žn
i“1 S

1

with their common intersection point x0 as the basepoint. Since every circle has a neigh-
bourhood of x0 which deformation retracts onto x0, the Van Kampen theorem implies that
π1pX,x0q is isomorphic to the n-fold free product Z ˚ ¨ ¨ ¨ ˚ Z.

2. Suppose A consists of two linked circles in R3. Of interest is the fundamental group
π “ π1pR3 ´Aq. One can figure out that R3 ´A deformation retracts onto S2 _ pS1 ˆS1q,
as seen in Figure 3. The Van Kampen theorem then implies that π – π1pS1 ˆS1q – ZˆZ.

14



3. The simplest non-trivial knot T can be seen as the image of S1ˆS1 defined as z ÞÑ pz2, z3q,
see Figure 3. In general, when embedding images Tm,n of z ÞÑ pzm, znq into R3, one can can
find suitable deformation retracts leading to π1pR3 ´Tm,nq – Z{m ˚Z{n by Van Kampen.
Thus, π1pR3 ´ T q – Z{2 ˚ Z{3.
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4 Lecture 2 (14/2): Handle decompositions

Definition 4.1. A topological space M is a manifold of dimension n if

• M is Hausdorff;

• M is second countable;

• M is locally Euclidean of dimension n.

Definition 4.2. A smooth manifold is a topological manifold M together with a choice of
maximal atlas.

Now, a natural question is in which situations are a topological manifold and a smooth
manifold the ‘same’? That means, what can we say about mappings going from the space of
smooth manifolds to the space of topological manifolds? It turns out2 that, in general, such
maps are not injective, nor surjective. Nevertheless, when the dimension n “ 0, 1, 2, 3 of the
manifolds we are considering, such a map must be a bijection3.

From now on, we assume all manifolds to be smooth.

Definition 4.3. Let 0 ď k ď n and let M be a manifold with boundary, and where dimpMq “ n.
An n-dimensional k-handle hk is a copy of Dk ˆ Dn´k attached to BM along an embedding
φ : BDk ˆDn´k ãÑ BM.

Here, it is worth noticing that one attaches a k ´ 1-handle hk´1 to k-handle hk by an em-
bedding φ, we have that φ : BDk ˆDn´k ãÑ B

`

Dk ˆDn´k
˘

“
`

BDk ˆDn´k
˘

Y
`

Dk ˆ BDn´k
˘

.

Example 4.4. Let’s look at the case where n “ 3 and k “ 1. Hence, we are attaching a 1-handle
to a 3-dimensional manifold M. Here, φ will attach BD1 ˆ D2 “ t0, 1u ˆ D2 to BM. Here,
‘attaching’ means introducing the equivalence relation x „ φpxq.

Example 4.5. For the case where n “ 3 and k “ 2, we are attaching a 2-handle – which is
given by D2 ˆ D1; a coin! – to a manifold. The part of the 2-handle we are attaching to the
manifold will be

`

BD2
˘

ˆD1 “ S1 ˆD1 (the outside strip of the coin).

Now, we will direct ourselves to some terminol-
ogy that may turn out to be handy: the core,
cocore and belt sphere of a handle, which are
all subsets of the handle. The core is given by
Dk ˆ 0, the cocore is 0 ˆ Dn´k, which has the
belt sphere 0 ˆ BDn´k as its boundary.

Remark 4.6. It is true that when attaching a handle in the way we showed above, corners
will not be smooth. Nevertheless, more advanced methods easily can rid of this non-smoothness
obtained from gluing.

Definition 4.7. Let f0, f1 : Y ãÝÑ X be embeddings. f0, f1 are called isotopic if there exists an
isotopy map H : Y ˆ I Ñ X (where I “ r0, 1s an interval) such that Ht :“ Hp´, tq, for t P I,
satisfying H0 “ f0 and H1 “ f1.

2This are two results proved by Milnor in the 50’s and by Freedman in the 80’s, respectively.
3Result proved by Edwin Moise.
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Theorem 4.8. Isotopic embeddings f0, f1 :
`

BDk
˘

ˆ Dn´k ãÝÑ BM give rise to diffeomorphic
manifolds

M Yf0 hk – M Yf1 hk.

Lemma 4.9 (Isotopy extension lemma). If Y is an compact (sub)manifold, then any isotopy
H : Y ˆI Ñ X Ă M (where again, I “ r0, 1s an interval) can be extended to an ambient isotopy
through diffeomorphisms

Φ : X ˆ I Ñ X, such that Φ0 “ id, Ht “ Φt,

and where Φt is a diffeomorphism for all t P I.

X ˆ I

Y ˆ I X

DΦH0ˆid

H

Proof. According to the above lemma, there exists

Φ : BM ˆ I Ñ BM, f1
Φ1
ÞÑ f1.

Now, as Φ is an isotopy, we can produce the following map (which, as a consequence, is also an
diffeomorphism):

BM ˆ I
–
Ñ BM ˆ I, px, tq ÞÑ pΦtpxq, tq .

Here, BM ˆ I is a so-called “collar neighbourhood” of BM. Recall that Φ0 “ id, and hence one
can extend this diffeomorphism to all of M as the identity map in Mz pBM ˆ Iq. Extend this
to M Yf1 hk as

M Yf0 hk Ñ M Yf1 hk, f0pxq ÞÑ Φ pf0pxqq “ f1pxq.

Example 4.10. The n-sphere can be built by two n-disks: Sn “ Dn YBDn Dn. Here, we can
view one of the two disks as a 0-handle (which would be D0 ˆ Dn – Dnq, and the other as
an n-handle (which would be Dn ˆ D0 – Dnq. We attach the n-handle to the 0-handle via
BDn ˆD0 – BDn – Sn´1 ãÝÑ Bh0 – BDn – Sn´1.

Example 4.11. One could consider a representation of the projective plane by the lower hemi-
sphere, were we identify opposite points on the equator:

RP2 “
R3zt0u

x „ λx
–

S2

x „ ´x
.

Remark 4.12. Representing objects by handle decompositions can in general not be done in
an unique way. For example, regarding , the following handle decomposition would also suffice:

Definition 4.13. Let M be a closed n-manifold. A handle decomposition for M is a sequence
of n-manifolds

H Ă M0 Ă M1 Ă M2 Ă . . . Ă Mn “ M

such that Mi`1 arises from Mi by attaching pi` 1q-handles with disjoint attaching regions.

Lemma 4.14. Any manifold admits a handle decomposition.

Proof. This is a direct consequence of the fact that any manifold admits a triangulation4.
4Result proved by J.H.C. Whitehead (1930’s).
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Also, it can be useful to know that any handle decomposition hk admits a dual handle
decomposition hn´k, which are diffeomorphic to each other:

hk :“ Dk ˆDn´k – Dn´k ˆDk “: hn´k.

The attaching maps for the dual handle decomposition are determined by the gluing of pk` 1q-
handles. To determine the dual of a certain handle decomposition, you “have to turn it upside-
down,” as the famous Jorge Becerra once said.

Exercise. Determine the dual handle decompositions of the examples given above.

Lemma 4.15. Any closed, connected n-manifold has a handle decomposition with a single 0-
handle and a single n-handle.

Proof. If we consider any (non-trivial; existing of more than one 0-handle) handle decomposition,
we have that M0 “

Ů

nD
n, and M1 “ M0 Y p

Ť

h1q – all 0-handles are connected by 1-handles,
due to the fact we have a connected manifold. Topologically, such a structure is isomorphic to
a single disk Dn. For the n-handles, one could consider the dual of the 0-handles and simply
repeat the above argument.

Now, a relevant question is: When are two handle decomposition related? When do they
give rise to the same manifold?

Theorem 4.16 (Cerf’s Theorem). Any two handle decompositions of a closed manifold are
related by a finite sequence of the following moves:

1. Stabilisation/cancelling: If 0 ă k ď n, an hk´1- and hk-handle can be cancelled (or created)
provided that the attaching sphere of hk and the belt sphere of hk´1 intersect transversally
in a single point:

´

BDk ˆ 0
¯

X

´

0 ˆ BDn´pk´1q
¯

“ ˚,

where the intersection must be transversal. “You should use hk as a winch to topple hk´1.”

2. Handle slide: Given two k-handles h1k, h
2
k (0 ă k ď n) isotope the attaching sphere of h1k

in B
`

M Y h2k
˘

by pushing it through a parallel of the core of h2k, which can be seen in the
figure below.

Exercise. Show that the argument used in the lemma about one 0-handle (and one n-handle)
is an example of cancelling.
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5 Classification of closed, connected, orientable surfaces I (Mau-
rits Brinkman)

Here, merely as an introduction for the classification of closed, connected, orientable surfaces,
we will look at some basic examples of handle decompositions. In particular, we will look at
handle decompositions for S1, S2, T 2, handle decompositions for the connected sum of surfaces
and the fact that any handle decomposition of a surface can be modified so that all 1-handles
are attached to the 0-handle. All of these examples can be seen as useful tools to obtain a deeper
understanding of the material treated in Lecture 2 (14/2): Handle decompositions above.

Example 5.1. The only closed, connected 1-manifold is S1. Namely, considering Lemma 4.15
for n “ 1, we see that any closed, connected 1-manifold M has a decomposition consisting
of one 0-handle and one 1-handle. Hence, M “ h0 \ h1, where h0 :“ D0 ˆ D1 – D1 and
h1 :“ D1 ˆ D0 – D1. Both of these are intervals, which can be continuously deformed to
half-circles, of which Figure 4 is the result. J: The union

is not disjoint,
as the inter-
vals intersect
in their end-
points.

Figure 4: h0 having boundary points a, b, and h1 having boundary points c, d.

In general, as we know from Lecture 2 (14/2): Handle decompositions, one attaches a k-
handle hk :“ Dk ˆ Dn´k to a manifold N using an embedding φ : BDk ˆ Dn´k ãÝÑ BN .
Remembering the construction sequence given in Definition 4.13, for M one needs to attach one
1-handle to the manifold that is the 0-handle, which is done by the map φ : BD1 ˆ D0 ãÝÑ Bh0,
where we know that BD1 ˆD0 – BD1 “ tc, du for some two point a, b, and Bh0 “ BD1 “ ta, bu.
In short, we need to attach ta, bu to tc, du, which can be done in exactly two ways: we either
attach the boundary points a to c and b to d, or we merge a with d and b with c. For both cases,
we obtain S1.

Now, the following example is again an application of Lemma 4.15, where it is important to
notice that we are allowed to take as many 1-handles as we like. The guarantee we have, is that
there exists an decomposition that includes a single 0-handle and a single n-handle.

Example 5.2. Let’s describe handle decompositions for S2 and T 2 with one 0-handle and one
2-handle.

In order to construct S2, we could attach a 2-handle h2 :“ D2 ˆ D0 – D2 to a 0-handle
h0 :“ D0 ˆD2 – D2 (both of these are disks, which can be continuously deformed into an upper
and lower hemisphere, as depicted in Figure 5) via the embedding

φ : BD2 ˆD0 – BD2 “ S1 ãÝÑ Bh0 – BD2 “ S1.

The simplest case of this embedding is the identity map. This glues the two red parts depicted
in Figure 5, from which then obtains S2.
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Figure 5: h2 is attached to h0, from which S2 is formed.

In order to come up with a handle decomposition for T 2, consider its representation given on
the left in Figure 6, where we identify opposite edges, and – as a consequence of that – the four
vertices represent one and the same point. In terms of handle decompositions, these vertices
and edges can be considered as two-dimensional objects: h0’s and h1’s, respectively. J: Rather than

“vertices and
edges can be
considered as
2d objects”,
they can be
thickened up
to 2d objects

Figure 6: Deforming the torus into its handle decomposition.

Looking at the representation on the right side in Figure 6, one could merge the parts in
blue together, as if this representation was a piece of paper, which we would fold into a ball:

The right representation in Figure 7, we recognise the attaching regions of the 1-handles (in J: The RHS
picture repre-
sents a neigh-
bourhood of
the 0-handle,
write? Then
the 1-handles
should con-
tinue up-down
and right-
left; and the
boundary of
the yellow 2-
handle should
meet the 1-
handles along
their bound-
ary, as in the
LHS pic.

pink and green) to the 0-handle (in blue), and the 2-handle (in yellow) which attaches to both
the 0-handle and 1-handles. Finally, this leads to the sequence, as in Definition 4.13, depicted
in Figure 8 below.

In particular, the former handle decomposition is created by attaching the 2-handle h2 to
h0 \h1 using the embedding BD2 ˆD0 – BD2 “ S1 ãÝÑ B ph0 \ h1q – S1, for which we can again
take the identity map.

J: Again the
union is not
disjoint. Also
can you write
the attaching
maps for the
1-handles?
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Figure 7: Deforming the torus representation.

Figure 8: Creating a handle decomposition for T 2.
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In the next example, we will look at a connected sum of surfaces, which is nothing more
than drilling out tiny open disks of each of the surfaces one is considering, and then gluing these
surfaces along the boundaries of the holes that are a result of the drilling, as depicted in Figure
9.

Figure 9: Example of a connected sum of two surfaces.

Example 5.3. In this example, we will describe a handle decomposition for the connected sum
of surfaces, which we will assume to be closed (i.e., that the surfaces are compact and without
boundary). For this, consider any two closed surfaces Σ1 and Σ2. The connected sum of Σ1 and
Σ2 can be defined in the following – very informal – way:

Σ1 # Σ2 “

`

Σ1 ´D2
˘

\
`

Σ2 ´D2
˘

glue over B pΣ1 ´D2q and B pΣ2 ´D2q
.

Here, since we assumed Σ1 and Σ2 to have no boundary, it holds that B
`

Σi ´D2
˘

“ BD2 “ S1
J: You have
to remove the
interiors of the
discs.

for i “ 1, 2.
Now, since we are considering surfaces, we are looking at 2-dimensional manifolds Σ1, Σ2,

which – according to Lemma 4.15 – have a handle decomposition h0 \p
Ů

h1q\h2, where
Ů

h1 is
the disjoint union of all 1-handles in this decomposition. Therefore, the handle decompositions
of Σ1 and Σ2 will look as follows: J: Again

unions are not
disjoint.

Figure 10: This is what the handle composition for both Σ1 and Σ2 looks like. The single
0-handle is coloured blue, the 1-handles in green and the single 2-handle in red.
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Due to the fact that the 1-handles are attached to the 0-handle in a disjoint way, we can
always find some ‘open space’, where no 1-handles are attached to the 0-handle. This open space
can even be enlarged by continuous deformation; stretching the region indicated in red in Figure
10.

In order to obtain a connected sum, we would take a disk D2 out of both Σ1 and Σ2. This
is exactly what we will do for the handle decomposition, but now we are ‘cutting out’ the disks
in a very clever way – we cut out the red regions depicted in Figure 11. These are indeed disks,
as the h2’s of both Σ1 and Σ2 are attached to the h0 \ h1’s.

Figure 11: Glueing the handle decompositions of surfaces Σ1 and Σ2.

After this, we will glue along the parts in purple (in Figure 11), which are both copies of
S1, as explained above. This finally results in the following handle decomposition of Σ1 # Σ2,
where both 0-handles are depicted in blue, the 1-handles in green, and both 2-handles (which
attach to both the 0-handles and 1-handles of the corresponding surfaces) in yellow:

Figure 12: The handle decomposition of Σ1 # Σ2.
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Of course, we have only showed what the handle decomposition for a connected sum of two
(closed) surfaces looks like, but one can repeat this procedure to obtain the handle decomposition
for any amount of (closed) surfaces.

The last theorem of this section looks deeper into Definition 4.13; it will look at a case
that was previously not mentioned, merely to keep things simple. Namely, for a 1-handle it
can happen that one of its ‘legs’ is attached to the 0-handle, while the other is attached to a
1-handle. By continuous deformation, we will show that this is not any different from both of the
legs being attached to the 0-handle. In particular, the following theorem will be an application
of Cerf’s Theorem, which we discussed in Lecture 2 (14/2): Handle decompositions. J: Rather than

an application,
it is the proof
of the handle
slide for k “

1, n “ 2! :)

Theorem 5.4. Any handle decomposition of a surface can be modified so that all 1-handles are
attached to the 0-handle.

Proof. Let us assume we are dealing with the following case, where we have a 1-handle that has
one of its ‘legs’ attached to another 1-handle:

Figure 13: Visual representation of Theorem 5.4, where part of the 0-handle is shown (blue) and
two 1-handles (green).

Now, for convenience, denote the region where we the leg of the 1-handle is attached to the
other 1-handle by φ1. It is our task to find a diffeomorphism that sends this region φ1 to a
region φ2, where the latter is on the boundary of the 0-handle. Before we start building such
a diffeomorphism, let us consider a part of the boundary (depicted as the pink ra, bs in Figure
13) of our M :“ M1 (see Definition 4.13) that contains both φ1 and φ2, and consider it as an
interval of the real line, which can be done by the embedding ra, bs ãÝÑ R. In this copy of the
real line, let us denote the distance that need to be covered to move φ1 to φ2 by k P R. J: φ is the re-

gion or the
embedding (at-
taching map)?

Figure 14: On our way to finding an isotopy Ht that moves φ1 to φ2.
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In order to find the diffeomorphism that replaces the question mark in Figure 12, we will
need to build the following isotopy (where t P I :“ r0, 1s), which would move φ1 to φ2:

Ht : ra, bs ˆ I Ñ ra, bs Ă BM such that H0 “ φ1, H1 “ φ2.

For this isotopy, one could take Ht “ φ1 ` kt. Now, as a consequence of the isotopy extension
lemma, there exists an isotopy

Φt : BM ˆ I
–
Ñ BM ˆ I, px, tq ÞÑ pΦtpxq, tq,

such that Φ0pφ1, 0q “ 0 and Φ1pφ1, 1q “ φ2. We will take this diffeomorphism to be the identity
map, except on the green area in Figure 14. J: Have a look

whether you
mean Φ or Φt.
In general if
H : X ˆ I Ñ

Y we put Ht
for the map
Hp´, tq : X Ñ

Y
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6 Classification of closed, connected, orientable surfaces II (Kevin
van Helden)

In this section, all functions are continuous and all surfaces are connected. From the previous
section, we recall the following results:

Theorem 6.1. Every surface has a handle decomposition with one 0-handle h0, and with all
1-handles attached to Bh0.

Proposition 6.2. For every two strictly increasing functions ϕ1, ϕ2 : r0, 1s Ñ R, there exists a
homeomorphism h : R2

´ Ñ R2
´ (with R2

´ :“ tpx, yq | y ď 0u and BR2
´ – R ) such that h˝ϕ1 “ ϕ2

and such that h is equal to the identity outside of a compact set of R2
´.

Proposition 6.3. Let F be a surface. For φ1, φ2 : BD1 ˆ D1 Ñ BF and a homeomorphism
h : F Ñ F such that h ˝ φ1 “ φ2, we have that D1 ˆD1 Yφ1 F “ D1 ˆD1 Yφ2 F .

Locally, we can view the boundary of a surface F as R2
´. Applying 6.2 to such a neighbour-

hood of F , we find that we can slide an attaching region of a 1-handle along the boundary of F
without changing the surface (up to homeomorphism, that is.)

We will now proceed to define the object that this section is about: Kirby diagrams.

Definition 6.4. A Kirby diagram is a sequence paiq
2n
i“1 such that |tai “ aj | 1 ď i ď nu| “ 2

for all 1 ď j ď n.

We normally denote a Kirby diagram by a line and attach ai to the point fpaiq for a strictly
increasing function f : t1, . . . , nu Ñ R.

Example 6.5. An example of a Kirby diagram is K “ p1, 3, 2, 3, 2, 4, 4, 1q, or as in Figure 15.

1 3 2 3 2 4 4 1

Figure 15: The Kirby diagram K.

Kirby diagrams are a way to encode an orientable surface. We recover an orientable surface
FK from a given Kirby diagram K as follows:

1. Use the 1-point compactification on R to turn it into S1. The disk h0 enveloped by S1 is
our 0-handle.

2. Attach 1-handles in an orientation preserving way to h0, such that the boundary points of
the cores of the 1-handles coincide on the Kirby diagram. We call this new surface h1.

3. Attach a 2-handle to every boundary component of h1. The new surface is FK .

Example 6.6. The empty sequence leads to the surface in Figure 16a, which is S2. The Kirby
diagram K “ p1, 2, 1, 2q leads to the surface in Figure 16b, which is the torus T 2.

It might not be evident that the algorithm displayed before yields a unique surface (up to
homeomorphism). We will now prove that this is in fact the case.

Lemma 6.7. Let K be a Kirby diagram. Then FK is well-defined (up to homeomorphism).

Proof. The only ambiguity that can arise is in step 1, as it is not clear how many twists a 1-
handle can get before we attach it to h0. As we want FK to be orientable, the number of twists
in each handle should be even. By direct application of Proposition 6.3, we find that the two
surfaces in Figure 17 are homeomorphic, and thus h1 is well-defined (up to homeomorphism),
whatever the number of orientation preserving twists. Glueing 2-handles along the boundary
components of h1 does not change the homeomorphism type of FK either.
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(a) The surface corresponding to the empty Kirby
diagram. (b) The surface corresponding to K “ p1, 2, 1, 2q.

Figure 16: In this figure, all 0-,1- and 2-handles are red, blue and green respectively.

(a) Attaching a 1-handle to a surface F without
twists.

(b) Attaching a 1-handle to a surface F with two
twists.

Figure 17: In this figure, the surface F is coloured yellow and the attaching 1-handle blue.
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We could also reverse the process we described above: starting with a surface F , we can
obtain a Kirby diagram as follows.

1. Consider a handlebody decomposition of F with only 0-handle h0 and such that all 1-
handles are attached to Bh0.

2. Pick a point x on Bh0 – S1 that is not in the attaching region of any 1-handle.

3. Delete the point x from S1 and denote every attaching region by the 1-handle that is
attached to it. This results in a Kirby diagram.

Remark 6.8. If we want to consider the connected sum of two surfaces F1, F2, we can do this by
eliminating a neighbourhood of the point x1 and x2 that does not intersect with the attaching
region of any 1-handle. Then glueing the newly created boundaries of the 0-handles and of
the 2-handles together, we obtain a surface which we can give a Kirby diagram determined by
concatenating the Kirby diagrams of F1 and F2 obtained by deleting x1 and x2 respectively.

Remark 6.9 (Warning!). The above process to create a Kirby diagram from a surface is not
unique! The two different handlebody decompositions of S2 in Figure 18 yield different Kirby
diagrams, from left to right p1, 1, 2, 2q and p1, 2, 2, 1q.

(a) A handlebody decomposition of S2. (b) A handlebody decomposition of S2.

Figure 18: Two different handlebody decomposition of S2. In this figure, all 0-,1- and 2-handles
are red, blue and green respectively.

Definition 6.10. We define the relation „ between two Kirby diagrams A and B by stating
that A „ B if and only if FA and FB are homeomorphic.

It is not hard to see that the above relation is an equivalence relation. We will henceforth
denote the equivalence class of A by A.

The following three ’moves’ do not change to homeomorphism type of a surface. Note that
we will not write additional 1-handles, but the Kirby diagram should make clear where possible
extra one-handles could be attached.

1. The creation/annihilation of handle pairs, as described in Figure 19. This implies that
p. . . , a, a, . . . q “ p. . . q.

2. Crossing through the deleted point, as described in Figure 20. This implies that pa, . . . q “

p. . . , aq.
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(a) Annihilation of a handle pair. (b) Creation of a handle pair.

Figure 19: Creation/annihilation of handle pairs. In this figure, all 0-,1- and 2-handles are red,
blue and green respectively.

(a) Crossing through the deleted point. (b) Crossing through the deleted point.

Figure 20: Creation/annihilation of handle pairs. In this figure, all 0-,1- and 2-handles are red,
blue and green respectively.

(a) Annihilation of a handle pair. (b) Creation of a handle pair.

Figure 21: Creation/annihilation of handle pairs. In this figure, all 0-,1- and 2-handles are red,
blue and green respectively.
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3. A handle slide, as described in Figure 21. The two spaces described in Figure 21a and 21b
are homeomorphic by Proposition 6.2 and 6.3, as we move 1-handle b along the boundary
of h0 and a. This implies that pb, . . . , b, a . . . , aq “ pb, . . . , a . . . , a, bq. Ruben IJ:

Shouldn’t
there be
dots at both
ends of these
sequences,i.e.
p. . . , b, . . . , b, a, . . . , a, . . .q
and so on?

We are now ready to classify the closed orientable surfaces.

Theorem 6.11. Every closed orientable surfaces is isomorphic to #kT
2 for some k P N (with

#0T
2 :“ S2).

Proof. Let A “ pa1, . . . , a2nq be a Kirby diagram of a surface F . We will prove the theorem by
induction on the number n of 1-handles attached to h0.
If n “ 0 or n “ 1, then A is empty or A “ p1, 1q and by creation/annihilation of a handle pair
and by Example 6.6, we then know that F – S2 “ #0T

2.
Now assume that n ą 1. Then pick a a “ ai “ aj such that ak ‰ al for i ă k ă l ă j (if we can-
not, we can annihilate a 1-handle and the induction step is complete). Then (by possibly crossing
through the deleted point) there is a b such that we write A “ p. . . , a, . . . , b, . . . , a, . . . , b, . . . q.
By handle slides along the inner side of the 1-handle a, we can move all the elements between
the left-most b and the right-most a to the (direct) right of the left-most a, meaning that we get
that

A “ p. . . , a, . . . , b, . . . , a, . . . , b, . . . q “ p. . . , a, . . . , b, a, . . . , b, . . . q. (1)

By handle sliding the elements between the left-most a and b along b and by handle sliding the
elements between the right-most a and b along a, we get that

A “ p. . . , a, . . . , b, a, . . . , b, . . . q “ . . . , a, b, a, b, . . .. (2)

This gives us that F is homeomorphic to the connected sum of T 2 and a surface with pn ´ 2q

1-handles. This also completes the induction step.

Exercises

1. Prove that #kT
2 is homeomorphic to #lT

2 if and only if k “ l.

2. Prove the Poincaré conjecture in dimension two: any closed orientable surface homotopy
equivalent to S2 is (homeomorphic to) S2.

3. We described an algorithm to obtain an orientable surface of a Kirby diagram. Is there also
a way to obtain non-orientable surfaces? If so, can you classify the closed non-orientable
two-surfaces?
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7 Lecture 3 (21/2): 3-manifolds

Given the rather simple classification of closed oriented surfaces as connected sums of finitely
many tori one may hope that something similar happens in dimension three. One way to
explore this is to consider what kind of manifolds are obtained by gluing together finitely many
tetrahedra along their faces. The freely available program Regina does precisely that. It contains
a complete list of all closed 3-manifolds that can be obtained by gluing the faces of at most ten
tetrahedra and the results are baffling. There are manifold manifolds and the reader is urged to
play around with the program to see what is going on.

Some general observations are that at first one sees many lens spaces Lpp, qq see a later
lecture. After the lens spaces we also see so called Seifert fibered spaces, which include products
like Σ ˆ S1 where Σ is a closed orientable surface. More generally Seifert fibered spaces are
always a union of circles but there are finitely many exceptional circles where the other circles
wind around the circle as happens in the lens space.

As the number of tetrahedra increases new phenomena start to occur and we see more and
more hyperbolic 3-manifolds. This hints at the fact that the classification of 3-manifolds is far
from simple. One way to come to terms with 3-manifolds is to use Heegaard splittings and
surgery to express 3-manifolds in terms of lower-dimensional objects such as surfaces and knots.

Keeping in mind the Cerf theorem that any closed orientable manifold has a handle decom-
position we start by considering only the 0 and 1 handles.

Definition 7.1. A 3-dimensional handlebody of genus g is the attachment of g one-handles to
a single 0-handle.

Interpreting the remaining 2-handles and 3-handle as making up a handlebody of the same
genus we arrive at a Heegaard splitting:

Definition 7.2. A Heegaard splitting is a 3-manifold of the form H Yh H
1 where H,H 1 are

handlebodies of the same genus and h : BH Ñ BH 1 is a diffeomorphism.

Handlebodies in dimension three are pretty simple things but the diffeomorphism h we are
gluing along can be highly complicated. One way to generate interesting diffeomorphisms from
a surface to itself is using Dehn twists.

Definition 7.3. For any embedding α of A “ S1 ˆ r0, 1s into closed surface Σ define the Dehn
twist τα : Σ Ñ Σ to be the following diffeomorphism. Outside of the image of α we have τα “ id.
Parametrizing A by pe2πiθ, tq we set ταpαpe2πiθ, tqq “ αpe2πipθ`tq, tq.

The exact details of how big the annulus A defining the Dehn twist is does not interest us
much. We know that the 3-manifold obtained from a Heegaard splitting does not change (up to
diffeomorphism) when we change the gluing map h by an isotopy. This motivates the study of
the diffeomorphisms up to isotopy, known as the mapping class group.

Definition 7.4. For any orientable closed surface Σ denote by MCGpΣq the set of isotopy
classes of orientation preserving diffeomorphisms from Σ to itself.

Surprisingly the Dehn twists generate the mapping class group. This is not proved easily
and there are many interesting relations between the Dehn twists but we will not get into this
in this course.

Theorem 7.5. The mapping class group of a surface of genus g is generated by Dehn twists
long finitely many curves.

Heegaard splittings are a useful way to represent 3-manifolds but sometimes it is pleasant
to pass from gluing handlebodies to gluing solid tori only. This is known as surgery and we will
have much to say about it in the future.
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Definition 7.6. For a 3-manifold M , an embedded closed solid torus K Ă M and a diffeomor-
phism h : BpS1 ˆD2q Ñ BM ´ intpKq define the surgery MpK,hq “ S1 ˆD2 YhM ´ intpKq.

Surgery is closely related to Dehn twists.

Theorem 7.7. Suppose we have a Heegaard splitting M “ H Yh H
1 of genus g and a simple

closed curve α on BH. Then MpK,ϕq “ Yτα˝hH
1, where K is the thickening of the curve α and

ϕ sends the meridian of to some curve on BK.

Through this theorem the existence of handle decompositions implies any 3-manifold has
not only a Heegaard splitting but also a description as the repeated surgery of S3 along several
knots.
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8 The lens spaces Lpp, qq (Ruben van Dijk)

Lens spaces are generally considered the simplest (nontrivial) type of 3-manifolds, allowing for
explicit descriptions and some degree of visualisation that Dehn surgery generally does not
provide. Furthermore, lens spaces offer examples of manifolds that have the same homology and
are homotopy-equivalent, but are not homeomorphic.

Definition 8.1 (Lens spaces). Let p, q P Zą0 be coprime integers, and define the following
diffeomorphism on the sphere S3 “ tpz1, z2q : |z1|2 ` |z2|2 “ 1u Ă C2:

τp,q : S
3 ÝÑ S3

pz1, z2q ÞÝÑ

´

e2πi{pz1, e
2qπi{pz2

¯

.

Given a choice of p and q, we say that z, z1 P S3 are equivalent (denoted z „ z1) if and only if
there exists an n P Zě0 such that τnp,qpzq “ z1, where τnp,q “ τp,q ˝ τp,q ˝ ¨ ¨ ¨ ˝ τp,q denotes n-times
composition. The lens space of type pp, qq is then defined as the quotient space Lpp, qq :“ S3{ „.

Remark 8.2. There is no conventional name for the map that we call τp,q. Some authors omit
the subscript and some do not give the map a name at all.

Remark 8.3. Algebraically, τp,q generates a group action of Z{pZ on S3, defined by nz “ τnp,qpzq.
The lens space Lpp, qq consists of the orbits under Z{pZ.

This action is free, meaning that the stabiliser subgroup tg P Z{pZ : gz “ zu is trivial; this
is obvious from the fact that nz “ τnp,qpzq “ z only if n is a multiple of p.

The freeness of the action also follows from the fact that it is properly discontinuous, i.e.
every z P S3 has a neighbourhood Uz disjoint from its image gUz for all nontrivial g P Z{pZzt1u.
Indeed, if p ‰ 2, let

Uz :“
␣

pw1, w2q P S3 : |w1 ´ z1|2 ` |w2 ´ z2|2 ă 1
4 sin

2p2π{pq
(

be the intersection of S3 with an open 4-disk of radius sinp2π{pq{2 around z “ pz1, z2q. Then
its image under τnp,q is S3 intesected with a ball of the same radius around τnp,qpzq:

τnp,qpUzq “

!´

e2nπi{pw1, e
2nqπi{pw2

¯

P S3 : |w1 ´ z1|2 ` |w2 ´ z2|2 ă 1
4 sin

2p2π{pq

)

“

"

pw1, w2q P S3 :
ˇ

ˇ

ˇ
w1 ´ e2nπi{pz1

ˇ

ˇ

ˇ

2
`

ˇ

ˇ

ˇ
w2 ´ e2nqπi{pz2

ˇ

ˇ

ˇ

2
ă 1

4 sin
2p2π{pq

*

.

Since the distance between z and its image is, for n ı 0 mod p,

ˇ

ˇz ´ τnp,qpzq
ˇ

ˇ “

b

ˇ

ˇz1 ´ e2nπi{pz1
ˇ

ˇ

2
`
ˇ

ˇz2 ´ e2nqπi{pz2
ˇ

ˇ

2
ě sinp2π{pq,

the open disks of radius sinp2π{pq{2 around z and τnp,qpzq do not intersect. If p “ 2, simply pick
a ball of radius 1.

The quotient space of a manifold under a free and properly discontinuous group action of
diffeomorphisms is again a smooth manifold, yielding Proposition 8.4. A detailed discussion
about quotient spaces constructed via group actions can be found in e.g. Lee’s Introduction to
Smooth Manifolds and Van der Ban’s Notes on quotients and group actions.

Proposition 8.4. The lens space Lpp, qq is a closed, connected, orientable smooth 3-manifold
for any p, q P Zą0. J: A quick ar-

gument for
orientability
is the follow-
ing: the pro-
jection map
S3 Ñ Lpp, qq

is a local dif-
feomorphism,
since the ac-
tion is prop-
erly discontin-
uous. Hence
pointwise the
differential
is an isomor-
phism, so we
can pass our
choice of top
form/oriented
basis to the
quotient.

Example 8.5. For any positive integer q, τ1,q is the identity on S3, so Lp1, qq – S3. Some
authors exclude S3 from the definition of a lens space by requiring that p ą q.
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Example 8.6. Consider τ2,1, which maps points on S3 to their antipodes. Hence, Lp2, 1q

identifies opposite points on S3; using the usual correspondence C2 – R4, this implies that
Lp2, 1q – RP3.

Theorem 8.7. For any coprime p, q P Zą0, the lens space Lpp, qq is diffeomorphic to the ´p{q-
surgery on the unknot in S3.

Proof. Via a stereographic projection, we have a diffeomorphism S3 – R3 Y t8u, in which the
circles tpz1, z2q : |z1| “ 1u, tpz1, z2q : |z2| “ 1u Ă S3 again correspond to circles, as in Figure 22;
notice that the image of t|z1| “ 1u goes through the point at infinity.

Figure 22: The images of t|z1| “ 1u, t|z2| “ 1u Ă S3 under stereographic projection.

We divide each circle into p equally sized arcs (on t|z1| “ 1u these are projected to line
segments). In Lpp, qq, the points on one of these arcs are identified with points on any other.
Hence, we can discard all but one segment of t|z1| “ 1u without losing any points of Lpp, qq. By
the same reasoning, all points of Lpp, qq are contained in a ball whose poles are the end points
of a segment of t|z1| “ 1u and whose equator is t|z2| “ 1u.

No two points in the interior of this ball are equivalent, but on the spherical boundary,
each point in the upper hemisphere is identified with its image after a 2πq{p-rotation around
t|z1| “ 1u, followed by reflection into the lower hemisphere; see Figure 23. J: Could you

explain why
this claim is
true?

Figure 23: The identification on S2 that turns D3 into Lpp, qq.

Now, we core this ball, removing a solid cylinder centered around t|z1| “ 1u. We call this
solid cylinder V1, and the closure of what remains is denoted by V2. See Figure 24 on the next
page.

We first look at V2, which we split into p parts as shown in Figure 25. Using the identification
we had on the boundary of the original sphere, we glue them back into a single solid, whose top
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Figure 24: The splitting of Lpp, qq into V1 and V2.

and bottom are identified – this is a torus. A meridian on this torus runs along the side of the
previous solid, which corresponds to p equidistant vertical lines along the boundary of V1.

Figure 25: Disassembling and reassembling V2, here shown for p “ 5 and q “ 2.

Now, identifying the top and bottom of V1, we obtain another torus. The identification
gives it a 2πq{p twist, causing the meridian lines to connect into a single curve that runs along
the meridian of the V1-torus q times and along its longitude p times. Gluing V1 back into V2
is therefore a ´p{q-surgery, where the minus sign comes from the standard orientation of the
longitude.

Exercise 8.8. Show that the homology groups of Lpp, qq are given as follows:

HkpLpp, qqq “

$

’

&

’

%

Z if k P t0, 3u,

Z{pZ if k “ 1,

0 otherwise.

Notice that the homology of Lpp, qq is independent of q.
J: Probably
computing
π1pLpp, qq –

Z{p using van
Kampen is eas-
ier.

Exercise 8.9. Show that Lpp, qq – Lpp, q1q if and only if qq1 ” ˘1 mod p or q ” ˘q1 mod p.

Exercise 8.10. Show that Lpp, qq and Lpp, q1q are homotopy-equivalent if and only if ˘qq1 is
a quadratic residue modulo p, i.e. ˘qq1 ” x2 mod p for some x P Z. Find p, q and q1 such
that Lpp, qq and Lpp, q1q are homotopy-equivalent (and have the same homology), but are not
homeomorphic.

J: Let op!
These last two
exercises are
not exercises,
they are rather
difficult theo-
rems (!)
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9 Handle decomposition of RPn and CPn (Lisanne Sibma)

To discuss the handle decompositions of projective space, we first need to define what projective
space is.

We define projective space as:

Pn “ pkn`1zt0uq{ „,

where the equivalence relation is defined as

Definition 9.1.

rx1, . . . , xns „ ry1, . . . , yns ðñ Dλ P N such that x1 “ λy1, . . . , & xn “ λyn.

We denote the equivalence class of the point rx, y, zs by rx : y : zs P P2. We call these
coordinates x, y, z the homogeneous coordinates of the point rx, y, zs.

We will also be using the idea of defining projective space in dimension n as the n-sphere,
where we identify antipodal points, i.e. x „ ´x.

Handle decomposition of CPn and RPn

The manifolds RPn and CPn each have a handle decomposition consisting of n ` 1 handles. In
the case of RPn, there is one handle of each index from 0 through n and in the case of CPn,
there is one handle of each index from 0 through 2n.

To construct such a handle decomposition for RPn, recall that RPn is covered by n` 1 local
parametrizations

ψi : Rn Ñ RPn, i “ 0, . . . , n,

where ψi is given by

ψipx1, . . . , xnq “ rx1 : ¨ ¨ ¨ : xi : 1 : xi`1 : . . . xns.

Although the images ψpRnq of the map above cover RPn, we claim that we can take a smaller
domain and still cover all of RPn. Let this domain be D1 “ r´1, 1s, the unit interval. Define

Bi “ ψipD ˆ ¨ ¨ ¨ ˆDq,

taking n copies of D. Since we are working over the unit interval, we need to normalize each
point p P RP with homogeneous coordinates rx0 : ¨ ¨ ¨ : xns such that maxi |xi| “ 1. Then

p P Bi ðñ |xi| “ 1 p P intpBiq ðñ |xj | ă 1 @j ‰ i.

Now suppose we are given a point with |xi| ă 1 @i. Since we are working over an equivalence
class of points, we can rescale all points in such a way that there is at least one coordinate equal
to 1. Hence the Bi cover RPn.

Moreover, p P Bi & p P Bj ðñ |xi| “ |xj | “ 1, so the Bi only intersect along their
boundaries.

We claim that Bk intersects YiăkBi precisely on ψkpBpDˆ ¨ ¨ ¨ ˆDq ˆ pDˆ ¨ ¨ ¨ ˆDqq taking k
copies of D in the first product (and hence n´k in the second product). Hence we can interpret
Bk as a k-handle attached to YiăkBi, with the attaching map being ψk.

When working over complex projective space CPn we are using the same strategy, but instead
of taking our domain to be D1, we use the domain D2, the unit disk.

The goal of the rest of this chapter is to describe the handle decompositions of RP1,CP1,RP2

and RP3. Moreover, we want to describe each attaching map as a composition of the maps ψ
defined above.
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Handle decomposition of RP1

The handle decomposition of RP1 consists of a single 0-handle and a single 1-handle. They are
given by

• h0 :“ D0 ˆD1 – D1,

• h1 :“ D1 ˆD0 – D1.

To determine the attaching map, taking a look at Figure 26 below, we see that h0 is mapped
to the red part of S1 under ψ0 and h1 is mapped to the green part of S1 under ψ1, where both
x, y P r´1, 1s. B1 intersects B0 precisely when their images coincide.

Figure 26: Commutative diagram for RP1

In other words, B1 XB0 if ψ0pD1q “ ψ1pD1q. This gives us the equality

r1 : xs “ ry : 1s.

This equality holds if we take y “ 1
x “ x´1. As |x| ď 1, we can only take x “ ˘1, because if

|x| ă 1 we have |y| ą 1. We will use this knowledge without warning from now on. This gives
us y “ ˘1, so B1 intersects B0 precisely in the points r´1 : 1s and r1 : 1s.

So a map from h1 to h0 is well defined precisely when x, y “ ˘1, which gives us a map
from the boundary of h1 to the boundary of h0. This is precisely our attaching map. Since the
diagram in the picture above is a commutative diagram, we find that the attaching map is given
by

φ “ ψ´1
0 ˝ ψ1.

Let us look at where the attaching map sends the points y “ ˘1.

φp1q “ ψ´1
0 pψ1p1qq “ ψ´1

0 pr1 : 1sq “ 1

φp´1q “ ψ´1
0 pψ1p´1qq “ ψ´1

0 pr´1 : 1sq “ ψ´1
0 pr1 : ´1sq “ ´1

So our attaching map is precisely the identity map.

Handle decomposition of CP1

The handle decomposition of CP1 consists of a single 0-handle and a single 2-handle. They are
given by

• h0 :“ D0 ˆD2 – D2,

• h2 :“ D2 ˆD0 – D2.

In contrast to real projective space, we define the balls Bi using the unit disk D2 instead of
the unit interval D1. However, this doesn’t necessarily change the procedure, because any point
in the unit disk in complex space can be represented by a single complex number z. So again
as above we solve

r1 : zs “ rz1 : 1s.
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So this equality holds for z1 “ 1
z . Since |z| ď 1, we find that |z| “ 1. So the attaching region is

precisely the boundary of the disk S1 and the attaching map is given by ψ´1
0 ˝ψ1. Let z P C be

such that |z| “ 1. Then

ψ´1
0 pψ1pzqq “ ψ´1

0 prz : 1sq “ ψ´1
0 pr1 :

1

zw
sq “

1

z
.

As we know, 1
z “ z̄

|z|2
“ z̄ as |z| “ 1. So we send each point on the unit circle to its complex

conjugate. In other words, we attach the 2-handle by first flipping it around the real axis and
then gluing it using the identity map.

Handle decomposition of RP2

The handle decomposition of RP2 consists of a single 0-handle, a single 1-handle and a single
2-handle. They are given by

• h0 :“ D0 ˆD2 – D2 – D1 ˆD1,

• h1 :“ D1 ˆD1,

• h2 :“ D2 ˆD0 – D2 – D1 ˆD1.

Similarly to the case of RP1, we can determine the attaching maps using a commutative diagram,
which you can see in Figure 27 below

Figure 27: Commutative diagram of RP2

Attaching the 1-handle

We first need to attach the 1-handle to the 0-handle. We will be doing the same procedure as
above, which means we are first looking at where B1 intersects B0, i.e. where ψ0pD ˆ Dq “

ψ1pD ˆDq. This gives us
r1 : x : ys “ ru : 1 : vs.

This equality holds for u “ x´1 and v “ y ¨ x´1. We find that u “ ˘1 and v “ ˘y. Since
y P r´1, 1s already, we can say v “ y, which we will also use from now on. So B1 intersects B0

in the points r1 : 1 : ys and r´1 : 1 : ys. So a map from h1 to h0 is defined for pairs of points
p1, yq or p´1, yq and is given by ψ´1

0 ˝ ψ1.

ψ´1
0 pψ1p1, yqq “ ψ´1

0 pr1 : 1 : ysq “ p1, yq.

ψ´1
0 pψ1p´1, yqq “ ψ´1

0 pr´1 : 1 : ysq “ ψ´1
0 pr1 : ´1 : ´ysq “ p´1,´yq

So, the first piece is attached with the same orientation but the second piece is attached with a
twist. Hence the result of attaching h1 to h0 is the Möbius band.
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Attaching the 2-handle

Now, attaching the 2-handle we do in two parts. One part of the 2-handle attaches to the
0-handle and the other part attaches to the 1-handle.

To see where the 2-handle attaches to the 0-handle, we look at where B2 intersects B0, i.e.
where ψ0pD ˆDq “ ψ1pD ˆDq. This gives us

r1 : x : ys “ ra : b : 1s.

This equality holds for a “ y´1 and b “ xy´1. We find that a “ ˘1 and b “ ˘x “ x. So B2

intersects B0 in the points r´1 : x : 1s and r1 : x : 1s. So a map from h2 to h0 is defined for
pairs of points p1, xq or p´1, xq and is given by ψ´1

0 ˝ ψ2.

ψ´1
0 pψ2p1, xqq “ ψ´1

0 pr1 : x : 1sq “ px, 1q.

ψ´1
0 pψ2p´1, xqq “ ψ´1

0 pr´1 : x : 1sq “ ψ´1
0 pr1 : ´x : ´1sq “ p´x,´1q.

To see where the 2-handle attaches to the 1-handle, we look at where B2 intersects B1, i.e.
where ψ1pD ˆDq “ ψ1pD ˆDq. This gives us

ru : 1 : vs “ ra : b : 1s.

This equality holds for a “ uv´1 and b “ v´1. We find that a “ ˘u “ u and b “ ˘1. So B2

intersects B1 in the points ru : 1 : 1s and ru : ´1 : 1s. So a map from h2 to h1 is defined for
pairs of points pu, 1q or pu,´1q and is given by ψ´1

1 ˝ ψ2.

ψ´1
1 pψ2pu, 1qq “ ψ´1

1 pru : 1 : 1sq “ pu, 1q.

ψ´1
1 pψ2pu,´1qq “ ψ´1

1 pru : ´1 : 1sq “ ψ´1
1 pr´u : 1 : ´1sq “ p´u,´1q.

To get an idea of where each part of the boundary of the 1-handle and 2-handle ends up,
take a look at Figure 28 below.

Figure 28: Attaching the 1-handle and the 2-handle

Handle decomposition of RP3

The handle decomposition of RP3 consists of a single 0-handle, 1-handle, 2-handle and 3-handle.
They are given by

• h0 :“ D0 ˆD3 – D3 – D1 ˆD1 ˆD1,

• h1 :“ D1 ˆD2 – D1 ˆD1 ˆD1,

• h2 :“ D2 ˆD1 – D1 ˆD1 ˆD1,

• h3 :“ D3 ˆD0 – D3 – D1 ˆD1 ˆD1.

The idea for RP3 is the same as for RP1 and RP2, so we will now go through the process a
bit faster.
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Attaching the 1-handle

We first attach the 1-handle to the 0-handle. Solving r1 : x : y : zs “ ru : 1 : v : ws, we find that
u “ ˘1, v “ y, w “ z. This gives us points r˘1 : 1 : y : zs, so a map from h1 to h0 is defined for
points p˘1, y, zq. The attaching map is given by the composition ψ´1

0 ˝ ψ1. Then

ψ´1
0 pψ1p1, y, zqq “ ψ´1

0 pr1 : 1 : y : zsq “ p1, y, zq.

ψ´1
0 pψ1p´1, y, zqq “ ψ´1

0 pr1 : ´1 : ´y : ´zsq “ p´1,´y,´zq.

Attaching the 2-handle

Attaching the 2-handle is done in two steps as before. To attach the 2-handle to the 0-handle,
we solve r1 : x : y : zs “ ra : b : 1 : cs. This gives a “ ˘1, b “ x, c “ z. This gives us points
r˘1 : x : 1 : zs, so a map from h2 to h0 is defined for points p˘1, x, zq. The attaching map is
given by ψ´1

0 ˝ ψ2. Then

ψ´1
0 pψ2p1, x, zqq “ ψ´1

0 pr1 : x : 1 : zsq “ px, 1, zq.

ψ´1
0 pψ2p´1, x, zqq “ ψ´1

0 pr1 : ´x : ´1 : ´zsq “ p´x,´1,´zq.

To attach the 2-handle to the 1-handle, we solve ru : 1 : v : ws “ ra : b : 1 : cs. This gives
a “ u, b “ ˘1, c “ w. This gives us points ru : ˘ : 1 : ws, so a map from h2 to h1 is defined for
points pu,˘1, wq. The attaching map is given by ψ´1

1 ˝ ψ2. Then

ψ´1
1 pψ2pu, 1, wqq “ ψ´1

1 pru : 1 : 1 : wsq “ pu, 1, wq.

ψ´1
1 pψ2pu,´1, wqq “ ψ´1

1 pr´u : 1 : ´1 : ´wsq “ p´u,´1,´wq.

Attaching the 3-handle

The procedure is probably clear now, so we will now only state what each attaching map does.
First we attach the 3-handle to the 0-handle.

ψ´1
0 pψ3p1, x, yqq “ ψ´1

0 pr1 : y : z : 1sq “ py, z, 1q.

ψ´1
0 pψ3p´1, x, yqq “ ψ´1

0 pr1 : ´y : ´z : ´1sq “ p´y,´z,´1q.

Now we attach the 3-handle to the 1-handle.

ψ´1
1 pψ3pu, 1, vqq “ ψ´1

1 pru : 1 : v : 1sq “ pu, v, 1q.

ψ´1
1 pψ3pu,´1, vqq “ ψ´1

1 pr´u : 1 : ´v : ´1sq “ p´u,´v,´1q.

And last we attach the 3-handle to the 2-handle.

ψ´1
2 pψ3pa, b, 1q “ ψ´1

2 pra : b : 1 : 1sq “ pa, b, 1q.

ψ´1
2 pψ3pa, b,´1qq “ ψ´1

2 pr´a : ´b : 1 : ´1sq “ p´a,´b,´1q.
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10 Lecture 4 (28/2): Orientability and Connected sum of sur-
faces

Orientability

Definition 10.1. Let M be an n-manifold. We say M is orientable if

Dω P ΩnpMq such that ωx ‰ 0 @x P M.

An orientation is a choice of equivalence class rωs of such ω, where

rωs “ rω1s ðñ ω1 “ fω for f ą 0, f P C8pMq.

An orientation in M is a continuous choice of positive basis in TxM , @x P M .

Remark 10.2. If M is connected, there are only two possible orientations. Given that M has
an orientation, we denote by ´M the same manifold with the opposite orientation.

Example 10.3. • n=1: An orientation is a choice of direction.

• n=2: An orientation is a choice of (counter)clockwise rotation.

• n=3: An orientation is a choice of right-hand rule/left-hand rule.

Proposition 10.4. An n-manifold is non-orientable if and only if it contains an n-dimensional
Möbius strip, i.e.

DMobn ãÑ M

with
Mobn “ Dn´1 ˆD1{px, 0q „ prpxq, 1q

where r : Dn´1 Ñ Dn´1 is a reflexion

Example 10.5. Let n “ 2. Let us take the orientation to be a clockwise rotation. Then going
around the Möbius strip, once we reach the beginning again, we find that we end up with a
counterclockwise rotation. Hence if a 2-manifold with a Möbius band in it is not orientable.

Definition 10.6. Let φ : M Ñ N be a local diffeomorphism (eg. an embedding) between
oriented manifolds. We say that φ is

• orientation preserving if φ˚ “ dφ sends a positive basis to a positive basis.

• orientation reversing if φ˚ “ dφ sends a positive basis to a negative basis.

Connected sum

Definition 10.7. Let M1,M2 be two n-dimensional manifolds and let φi : Dn Ñ Mi be em-
beddings. If both M1,M2 are oriented, assume WLOG that φ1 preserves orientation and φ2

reverses orientation. Then the connected sum of M1 and M2 along the embeddings φi is

M1#M2 “
M1 ´ φ1pD̊nq \M2 ´ φ2pD̊nq

φ1pxq „ φ2pxq

for x P BDn.

Remark 10.8. The choice of orientation is crucial. In general,

M1#M2 fl M1#p´M2q

.
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Example 10.9.

Proposition 10.10. M1#M2 does not depend on the choice of embeddings.

Theorem 10.11 (Disc theorem (Palais 60’s)). Let M be an n-dimensional connected manifold.

1. If M is non-orientable, then any two embeddings Dn ãÑ M are isotopic.

2. If M is orientable, but both embeddings either preserve or reverse orientation, they are
also isotopic.

Proof of Prop 10.10. Suppose M1,M2 are orientable. Let φ1, φ1 : D
n Ñ M be two embeddings

for M1. Now suppose they both either preserve or reverse orientation, so they are isotopic by
Theorem 10.11. Then, by the isotopy extension lemma 4.9 there is a map

Ψ :M1 ˆ I Ñ M1 s.t. φ1 “ Ψ1 ˝ φ1, where Ψ1 “ Ψp´, 1q.

Then
Ψ1 :M1

–
ÝÑ M1.

This in turn implies
Ψ1 :M1 ´ φ1pD̊nq

–
ÝÑ M1 ´ φ1pD̊nq

which completes the proof.

Proposition 10.12. For surfaces, the orientability requirement can be dropped at all times.

Proof. For example, consider the connected sum of two tori, but with opposite orientation. Then
the second torus is glued inside of the first one. However, we can ’pull’ the second torus outside
and we end up with what we would have gotten if the two tori had the same orientation. This is
illustrated in Figure 29 below. In general, for surfaces, there is always an orientation reversing

Figure 29: The gluing of two tori does not depend on orientation

diffeomorphism.

Definition 10.13. Let M1,M2 be n-manifolds with one boundary component and let φi :
Dn´1 ãÑ BMi be embeddings as before. Then the boundary sum of M1 and M2 is given by

M16M2 “
M1 \M2

φ1pxq „ φ2pxq

for x P Dn´1.

Exercise 10.14. Show that BpM16M2q “ BM1#BM2.
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Determining embeddings

We first need to introduce a couple of concepts.

Remark 10.15. The orthogonal matrices are defined as

Oplq “ tl ˆ l real matrices A | A´1 “ AT u Ă GLplq Ă Rl
2

For example,

• Op1q “ S0

• Op2q “ S1 \ S1

In general
Opnq “ SOpnq \ SOpnq

.

Remark 10.16. For the definition of πn, recall Definition (2.3). For now, we’ll be using the
following:

• π0pOplqq – Z{2Z.

• π1pOplqq –

$

’

&

’

%

0, if l “ 1.

Z, if l “ 2.

Z{2Z, if l ě 3.

Remark 10.17. Let φ : Y ãÑ X be an embedding. Then TxY Ă TxX,x P Y . The orthogonal
complement of TxY in TxX is NxY so that

TxX “ TxY kNxY.

Then
NY “

ğ

xPY

NxY

is the normal bundle of Y in X. A normal framing of Y is a trivialisation of NY , i.e.

NY
–
ÝÑ Y ˆ RdimX´dimY .

Proposition 10.18. Up to isotopy, an embedding φ : BDk ˆ Dn´k ãÑ BM is completely deter-
mined (up to isotopy) by an embedding φ0 : BDk ˆ 0 “ Sk´1 ãÑ BM and a normal framing of
φ0pSk´1q (both up to isotopy).

The normal framing is is 1-1 correspondence with πk´1pOpn´ kqq.

The normal framing of φ0pSk´1q is a diffeomorphism

Npφ0pSk´1qq
–
ÝÑ Sk´1 ˆ Rn´k.

Exercise 10.19. Show why we take n´ k in the power of R in the normal framing above.

Corollary 10.20. To attach a 3-dimensional 2-handle to Hg “ h0 Y pYghgq, we only need to
specify a curve.

Proof. By Proposition 10.18, the embedding φ : BD2 ˆD1 “ãÑ BHg “
ř

g is determined by and
embedding φ0 : BD2 ˆ 0 “ S1 ãÑ

ř

g and a normal framing, which is in 1-1 correspondence with
π1pOp1qq. From Remark 10.16 we have that π1pOp1qq “ 0, so we indeed only have to specify the
curve

φ0 : BD2 ˆ 0 “ S1 ãÑ
ÿ

g

.
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11 Lecture 5 (7/3): Seifert manifolds

In this lecture, we elaborate on Lecture 3 by giving a more detailed description of what it
means to perform surgery along a framed link in R3. Let us start by defining a framed knot.
If K : S1 ãÝÑ R3 is a smooth embedding, then one can find an embedding g : S1 ˆ D2 ãÝÑ R3

such the core of the solid torus is mapped onto K. The embedded solid torus is called a tubular
neighbourhood of K, denoted by νK. Let T “ BpνKq be the boundary torus. Up to isotopy,
there exists a unique meridian m of T which is null-homotopic in νK, and there exist a unique
longitude ℓ of T which is null-homotopic in R3z int νK. Take m and ℓ to have the same common
base point x0. Together, m and ℓ generate the fundamental group of the torus π1pT, x0q – ZˆZ.
The longitude ℓ is called the canonical longitude, and it is not necessarily a parallel copy of K
on the torus T !

Now, any smooth embedding α : S1 Ñ T determines, up to isotopy, a diffeomorphism
h : S1 ˆ S1 Ñ T that sends the meridian t0u ˆ S1 to αpS1q. Identifying m and ℓ in S1 ˆ S1

under the embedding g of the tubular neighbourhood, there exist coprime integers p, q such that
h is isotopic to the product of Dehn-twists τpmτ qℓ : S1 ˆ S1 Ñ T .
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Figure 30: How to construct a Heegaard diagram.

12 Lecture 6 (10/3)

Recap of Heegaard diagrams Recall that we established an equivalence between the fol-
lowing two:

tHandle decompositions of 3-mfdsu ðñ tHeegaard Splittingsu

This is done as follows. We can write M “ h0 Y pYh1q Y pYh2q Y h3. Then we take Hg “ h0 Y

pYh1q, and after dualising this decomposition, we also get a genus g1 handlebody h˚
3 Y pYh˚

2q :“
Hg1 . They are attached to each other by a homeomorphism f : BHg Ñ Hg1 , whence g “ g1 and
f P MCGpΣgq. Thus, every handle decomposition determines a Heegaard splitting. Conversely,
every Heegaard splitting obviously determines a handle decomposition. We also established the
following equivalence:

tEmbeddings BD1 ˆD1 ãÝÑ BMu ðñ tEmbeddings BD2 ãÝÑ BMu ˆ π1pOp1qq

Since π1pOp1qq “ 0, this term cancels.

Definition 12.1. A planar Heegaard diagram consists of R2, together with the attaching regions
of 1-handles and attaching sphere of 2-handles, as illustrated in 30.

Example 12.2. See 31 for two equivalent diagrams which represent S3.

We also reflect the fact that certain handle decompositions give diffeomorhic manifolds, by
declaring that diagrams which are related by the following moves are equivalent:

1. Handle cancellation/creation

2. Handle slide (1-handle) 32

3. Handle slide (2-handle) 33
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Figure 31: An example of a Heegaard diagram.

Figure 32: The handle slide move for a 1-handle

Finitely Presented Groups and 4-manifolds Finitely presented groups give rise to 4-
manifolds.

G “ xg1, . . . , gn | r1, . . . , rmy

Indeed, let such a group be given as above. To start with, we will construct a CW complex
X which has π1pXq – G, and then adapt this construction to 4-manifolds. Recall that a CW
complex is inductively constructed by constructing the k-skeleta.

1. Set X0 “ tptu.

2. For each generator gi of G, attach a 1-cell, and obtain X1 “ Bouquet of n circles. It is
easy to check using Van Kampen’s theorem that π1pX1q “ F xg1, . . . , gny, the free group
on n generators.

3. Now, we want to impose the relations r1, . . . , rm. To do this, we will attach m 2-cells, as
follows. Recall that a 2-cell is specified by giving a continuous map αi : BD2 “ S1 Ñ X1.
Let αi be the path represented by the relation ri, viewed as a path in X1. Then we obtain
X2 by attaching m 2-cells to X1 with the specified attaching maps αi, which impose the
relations π1pX2q – G.

Now, we want to "thicken" this procedure to obtain an analogous result for 4-manifolds. We
do this in the familiar way. We start with a 0-handle (i.e. h0 “ D4q and attach 1-handles for
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Figure 33: The handle slide move for a 2-handle

each generator in G. Then we attach 2-handles. Note that Bh2 “ S1 ˆ D2, so the embedding
αi : S

1 ˆ D2 is determined up to isotopy by prescribing where the core of the solid torus is
mapped to. Let this map be the path representing ri in π1pX1q – F xg1, . . . , gny. Then we are
left with a manifold with boundary, so we close off with 3-handles and a single 4-handle. (This
is possible by the Laudenbach-Poenaru theorem mentioned later in the course) Thus, we obtain
a closed 4-manifold X which has π1pXq – G.
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13 Lecture 7 (14/3)

One of the main goals of the course is to represent closed, connected, oriented 3-manifolds in
a diagrammatic way. Attaching a 3-dimensional 3-handle amounts to specifying a pair of discs
on the plane (whose boundaries are identified in a orientation-reversing way), and to attach
a 2-handle all we have to specify is a simple closed curve on that diagram. Hence we have a
surjective map

"

planar Heegaard
diagrams

*

! closed, connected,
oriented 3-manifolds

)

,

where by a planar Heegaard diagram we mean one such that the the boundary of the union of
0,1 and 2-handles is S2 This amounts to saying that the complement of the attaching curves
for 2-handles on the diagram is connected. According to the Cerf theorem, any two diagrams
encoding the same manifold must be related by cancelling pairs of handles and handle slides,
that is

#

planar Heegaard
diagrams

+

stabilisation
handle slide
planar isotopy

! closed, connected,
oriented 3-manifolds

)

–

is a bijection. On the other hand we have also studied another description of 3-manifolds, namely
performing surgery along a framed knot. We have then a commutative diagram

t framed links in S3 u

! closed, connected,
oriented 3-manifolds

)

! 4-dimensional
2-handlebodies

)

surgery

B

where the horizontal arrow is surjective by the Lickorish-Wallace theorem (hence the right bot-
tom map). A 4-dimensional 2-handlebody is a compact, connected, oriented 4-manifold of the
form h0 Y p

Ť

i h2q. Given a framed link L, the left bottom arrow attaches #L 2-handles to D4

along the components of L.

The Cerf theorem tells us how the 2-handles of two diffeomorphic 2-handlebodies are related,
namely by handle slides. So we can mod out the 2-handles slides to get an injection

"framed links
in S3

*

2-handle slide

! 4-dimensional
2-handlebodies

)

but the surgery map does not become an injection (if in a composite of two maps the first is
injective, the composite might NOT be injective (!)). In this case, D4 “ h0 and CP2 ´ intpD4q

have S3 as boundary whereas the two 4-manifolds are not diffeomorphic. ˘CP2 ´ intpD4q arises
from attaching a 2-handle determined by the unknot with framing ˘1.

It turns out that, together with handle slides, the addition or deletion of a unknot component
with framing ˘1 (called blow-up or a blow-down, respectively) is enough to relate two knots whose
surgery determines the same surgery.

Theorem 13.1. [Kirby 70s] Surgery defines a bijection
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t framed links in S3 u

blow-up/down
handle slide

"

closed, connected,
oriented 3-manifolds

*

–

That is, given two framed links L,L1 in S3, surgery on them defines diffeomorphic manifolds if
and only if there is a sequence of blow-up/down ’s and handle slides turning L into L1 (as framed
links).

We now proceed to explain what a handle slide looks like for a framed link: given two
components K1,K2 of an oriented framed link (they could possibly be knotted), let λ1, λ2 be
the longitudes defining each framing. Then a handle slide defines K1 Y K2 by K 1

1 Y K2 where
K 1

1 :“ K1#b ˘ λ2. Here b is some band connecting K1 and λ2. The sign ˘ is forced by the
choice of the band, as it forces the orientation of the longitude.

What about the framings? The component K2 keeps its framing λ2, whereas K 1
1 gets as

framing the following curve: λ1
1 “ λ1#b ˘ parpK2q, where parpK2q stands for a parallel copy of

K2.

Exercise 13.2. Check that, viewing the framings as integers, if ni is the framing for Ki, then
the framing n1

1 for the new component K 1
1 is given by

n1
1 “ n1 ` n2 ˘ 2 lkpK1,K2q,

where the sign ˘ is the same as the one in K1#b ˘ λ2.

Example 13.3. The following is a handle slide:

Observe that the choice of band can dramatically change the handle slide:
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Example 13.4. The following framed links represent all S3:

Given a set of r strands, as below,

write a box with +1 for a full right twist,

and a box with -1 for a full left twist,
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Proposition 13.5. Suppose that r parallel strands belonging to different components pierce the
disc bounding an unknot with framing ˘1 exactly once. Then changing a framed link diagram
as indicated locally produces diffeomorphic manifolds:

For the sake of concreteness, let us depic what this equality looks like for r “ 1

and r “ 2

Proof (of the proposition). We just especify the case r “ 2, the general case follows iterating the
argument.
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Example 13.6. The following framed links represent all the same manifold:

Example 13.7. The following framed links represent all the same manifold:

Exercise 13.8. Show that any knot K can be turned into the unknot by changing the sign of
some of its crossings.

Proposition 13.9. Let L “ K YU be the 2-component link formed by a knot K and an unknot
component U with framing 0 with the property that K pierces the disc bounding U exactly once.
Then surgery on L produces S3.

Proof. The sign of any crossing of K can be changed by a handle slide as follows:

Applying this argument a number of times, by the previous exercise, we obtain a Hopf link
with one component 0-framed and the other n-framed for some integer n. By handle sliding the
n-framed knot over the 0-framed unknot, we can change the framing by ˘2. We hence get that
the link is equivalent to the Hopf link where one component is 0-framed and the other is either
0-framed or 1-framed. In both cases surgery on these links produces S3.
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Corollary 13.10. Given a framed link L “ U Y K1 Y K2 Y ¨ ¨ ¨ where U is the unknot with
framing 0 with K1 piercing the disc bounding U exactly once (and not any other component),
then surgery on L produces the same 3-manifold as the link obtained from L by removing the
components U and K1.

Proof. Exercise.
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14 Lpp, 1q as the boundary of a 4-manifold (Ruben van Dijk)

In Section 8 we introduced lens spaces as quotients under a certain group action, and sub-
sequently found an equivalent description using Dehn surgery in Theorem 8.7. Although the
surgical description is more abstract, it allows us to generalise the definition of Lpp, qq by drop-
ping the requirement that p and q are positive. Henceforth, we will therefore use this as our
definition of a lens space:

Definition 14.1 (Lens spaces, revisited). Let p, q P Z be coprime integers. The lens space
Lpp, qq is the ´p{q-surgery on the unknot in S3.

Explicitly, this means that

Lpp, qq “ pS1 ˆD2q Yh pS1 ˆD2q,

where h : S1 ˆ S2 Ñ S1 ˆ S2 is a diffeomorphism that sends the longitude of one torus to the J: S2 or S1?

longitude of the other, and the meridian to a curve that runs p times along (same direction) its
longitude and q times against (opposite direction) its meridian.

Example 14.2. We already saw in the first homework that Lp0, 1q – S2 ˆ S1.

Exercise 14.3. Allowing p and q to be negative gives rise to many redundancies. Show that
the following lens spaces are diffeomorphic:

Lpp, qq – Lpp,´qq – Lp´p, qq – Lp´p,´qq.

Which of these diffeomorphisms preserve orientation? Do Propositions 8.8, 8.9 and 8.10 still
hold now that p and q need not be positive?

Now, consider the lens space Lpp, 1q and the corresponding diffeomorphism h. Define a
4-manifold consisting of two 2-handles by J: Isn’t there

any 0-handle?

Ep :“ pD2 ˆD2q YH pD2 ˆD2q,

where H : S1 ˆD2 Ñ S1 ˆD2 extends h by sending S1 ˆ t0u to itself and the meridian on the
boundary BpS1 ˆD2q “ S1 ˆS1 of one solid torus to a curve on the other’s, which runs p times
along its longitude but only once against its meridian.

Then, since
Ep – pS3 ˆ r0, 1sq YH pD2 ˆD2q,

Theorem [[theorem from lecture 10 March]] tells us that the boundary of Ep is given by BEp “ J: Do you
mean D3 ˆ

r0, 1s?Lpp, 1q.

Exercise 14.4. Give an expression for H in terms of h, using Alexander’s Lemma.

Example 14.5. The manifold E0 can be described as a trivial bundle over S2 with fiber D2,
so E0 – S2 ˆD2. Its boundary is BE0 – S2 ˆ S1 – Lp0, 1q.

Example 14.6. Consider the complex projective plane CP, its charts

Ui :“ tpz0 : z1 : z2q : zi ‰ 0u,

and the corresponding diffeomorphisms φi : Ui Ñ C2 defined by φ0pz0 : z1 : z2q :“ pz1{z0, z2{z0q,
φ1pz0 : z1 : z2q :“ pz0{z1, z2{z1q, and φ2pz0 : z1 : z2q :“ pz0{z2, z1{z2q. Notice that

U0 Y U1 “ CPztp0 : 0 : 1qu,
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so
C2 YΦ C2 “ φ0pU0q YΦ φ1pU1q – CPztp0 : 0 : 1qu,

where Φ glues the images of the intersection of domains φ0pU0 X U1q “ φ1pU0 X U1q “ C˚ ˆ C.
Explicitly, Φpz, wq “ φ0 ˝ φ´1

1 pz, wq “ pz´1, z´1wq. J: Why?

This map sends all pz, wq P C˚ ˆ C with |z| ď 1 to elements pz1, w1q with |z1| ě 1 and vice
versa, so we can restrict ourselves to gluing cylinders D2 ˆ C – tpz, wq P C2 : |z| ď 1u along
their boundaries S1 ˆ C – tpz, wq P C˚ ˆ C : |z| “ 1u:

C2 YΦ C2 – pD2 ˆ Cq YΦ|S1ˆC
pD2 ˆ Cq.

We can restrict Φ even further by demanding that |w| ď 1, so that we end up gluing two copies
of D2 ˆD2 along S1 ˆD2:

pD2 ˆD2q YΦ|S1ˆD2
pD2 ˆD2q.

Now, recall that the gluing map sends pz, wq to pz´1, z´1wq; restricted to the solid torus, this
sends S1 ˆ t0u to itself, and the meridian on the boundary to a curve that runs once along the
longitude and once against the meridian. In other words, Φ|S1ˆD2 is the diffeomorphism we
previously called H corresponding to p “ 1, so

E1 “ pD2 ˆD2q YΦ|S1ˆD2
pD2 ˆD2q.

However, the last restriction we made causes this manifold to no longer be diffeomorphic to
the punctured projective plane CPztp0 : 0 : 1qu. To resolve this, consider the interior of the disk
D4 Ă C2, without its center φ2p0 : 0 : 1q “ p0, 0q. Its preimage under φ2 is

A :“ φ´1
2 pintD4ztp0, 0quq “ tpz : w : 1q P CP : |z|, |w| P p0, 1qu ,

and hence A Ă U0 and A Ă U1. The image of A under φ0 is

φ0pAq “ tφ0pz : w : 1q : |z|, |w| P p0, 1qu “ tpw{z, 1{zq : |z|, |w| P p0, 1qu “ C ˆ pCz intD2q,

and similarly
φ1pAq “ C ˆ pCz intD2q.

Now,

CPz intD4 “ pCPztp0 : 0 : 1quq zA

– φ0pU0zAq YΦ|C˚ˆD2
φ1pU1zAq

“ pC ˆD2q YΦ|C˚ˆD2
pC ˆD2q

– pD2 ˆD2q YΦ|S1ˆD2
pD2 ˆD2q,

and thus
E1 – CPz intD4.

Since CP is a complex manifold, it has a canonical orientation induced by the usual ori-
entation of a complex vector space. It turns out that the above diffeomorphism reverses this
orientation, and hence the diffeomorphisms

E1 – ´CPz intD4

and
E´1 – CPz intD4

are orientation-preserving.
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15 Lecture 8 (21/3)

Thusfar we have learned to describe (handle decompositions of) manifolds in two and three
dimensions: surfaces can be represented as Kirby diagrams on the line, and 3-manifolds as
Heegaard diagrams on the plane. In this section, we set out to treat 4-manifolds in a similar
manner, as diagrams in 3-space, after recalling some terminology about handle decomposition.

The geometry of handles

Let hk “ Dk ˆDn´k be a k-handle. We can distinguish the following subsets of hk:

Attaching region BDk ˆDn´k

Attaching sphere BDk ˆ t0u

Core Dk ˆ t0u

Cocore t0u ˆDn´k

Belt sphere t0u ˆ BDn´k

For n “ 3, these parts of h1 and h2 are shown in Figures 34a and 34b.

(a) A 1-handle. (b) A 2-handle.

Figure 34: Handles in 3-space.

In Kirby diagrams for surfaces, we drew a handle decomposition by indicating the attaching
spheres of 1-handles on the line representing the boundary of the 0-handle BD2 – R Y t8u; the
attachment of the single 2-handle was implicit.

In Heegaard diagrams for 3-manifolds, the boundary of the 0-handle BD3 – R2 Y t8u was
represented by the plane. The 1-handles were indicated by their attaching regions and the
2-handles by their attaching spheres; the one 3-handle was once again implicit.

We also saw that we can obtain different handle decompositions (and hence different dia-
grams) for the same manifold via handle moves. One such move is handle cancellation:

Proposition 15.1. A k-handle hk and pk ` 1q-handle hk`1 can be cancelled if the belt sphere
of hk intersects the attaching sphere of hk`1 at a single point.

Kirby diagrams for 4-manifolds

In 4-space, a 0-handle is a ball, with boundary homeomorphic to R3 Y t8u. We can thus use
3-space to represent the boundary of this handle. To this boundary, we attach 1-handles D1ˆD3

along their attaching region BD1ˆD3, i.e. the disjoint union of two 3-balls. Therefore, a 1-handle
for a 4-manifold can be represented as a pair of balls in 3-space.

The union p0-handleq Y p1-handleq has boundary S1 ˆ S2; this can be shown by shifting one
ball in the corresponding diagram to include the point at infinity. More generally, the union of
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Figure 35: A Kirby diagram for a manifold with two 1-handles and three 2-handles.

a 0-handle and g 1-handles has boundary

B
`

6gS
1 ˆD3

˘

“ #gS
1 ˆ S2.

Now, 2-handles are represented by their attaching spheres on this boundary, depicted as
framed links and framed arcs between 1-handles, as in Figure 35.

Describing the 1- and 2-handles is in fact enough to describe the entire 4-manifold, as we
will now show.

Assuming that the manifold in question is closed and connected, we can find a handle
decomposition that has a single 4-handle. Via duality, the union of this 4-handle and g 3-
handles is diffeomorphic to the union of a 0-handle and g 1-handles, and hence its bound-
ary is diffeomorphic to #gS

1 ˆ S2. Hence, for our manifold to be closed, we must have that
X1 :“ p0-handleq Y p1-handlesq Y p2-handlesq has boundary BX1 “ #gS

1 ˆ S2.
The Laudenbach–Poénaru Theorem says that any diffeomorphism from #gS

1 ˆ S2 to itself
can be extended to a self-diffeomorphism on 6gS

1 ˆD3, so if BX1 “ #gS
1 ˆS2, there is a unique

closed manifold that can be obtained by attaching 3-handles and a 4-handle to X1. In other
words, a closed 4-manifold is completely described by its 1- and 2-handles.
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16 Torus knots (Ruben IJpma)

Given any knot K : S1 ãÑ R3, computing the fundamental group π1pR3zKq is of interest, since
it allows one to distinguish different types of knots. (We have the convention of denoting by
K both the embedding and its image set.) The specific purpose of this lecture is to elaborate
on Example 3 given earlier, where the case of torus knots is briefly discussed. To this end,
first recall the following version of the Van Kampen theorem, which will be necessary for our
computation.

Theorem 16.1. Suppose that X is covered by path-connected open sets U, V , and that U X V
is path-conneceted. Let x0 P U X V , and suppose that

π1pU, x0q “ xg1, . . . , gn | r1, . . . , rmy,

π1pV, x0q “ xh1, . . . , hp | s1, . . . , sqy,

π1pU X V, x0q “ xf1, . . . , fi | q1, . . . , qjy.

Let iU,V : U XV Ñ U, V denote the inclusions. Van Kampen says that the inclusions U, V ãÑ X
induce an isomorphism

π1pX,x0q – xg1, . . . gn, h1, . . . hn | r1, . . . , rm, s1, . . . , sm, i
U
˚ pfkq “ iV˚ pfkq, k “ 1, . . . , iy.

Let us now generalise Example 3 to include more types of torus knots. We take S1 “

tθ mod 2πu, and D2 “ tpr, θq : r P r0, 1s, θ P S1u{pt0u ˆ S1 „ ˚q. Let T be the standard
embedding of the torus S1 ˆ S1 ãÑ R3 given by

pφ,ψq ÞÝÑ pp2 ` cospψqq cospφq, p2 ` cospψqq sinpφq, sinpψqq.

For m,n ą 0 be with gcdpm,nq “ 1, define Km,n : S1 Ñ R3 to be the map θ ÞÑ pmθ, nθq

composed with T . For m “ 1 or n “ 1 this gives the unknot. For m,n ą 1, this gives a knot
wrapping around the torus m times longitudinally and n times meridionally.

Exercise 16.2. Draw the image of Ki,j for i, j “ 1, 2, 3 from the top view of the torus. Figure
3 already gives a few of these. Realise that Km,n is not injective if gcdpm,nq ą 1.

To make matters easier, let T “ S1 ˆ S1, and we view T to sit inside S3 via the splitting
S3 “ BD4 “ pBD2 ˆD2q Y pD2 ˆ BD2q, which is made explicit by the pushout diagram

T S1 ˆD2

S1 ˆD2 S3.

pφ,ψqÞÑpφ,1,ψq

pφ,ψqÞÑpψ,1,φq ιm

ιn

Let K be the image of θ ÞÑ pmθ, nθq in T ãÝÑ S3. So, instead of computing π1pR3zKm,nq, we will
compute π1pS3zKm,nq. Note that π1pSnzιpF qq “ π1pRnzF q for any compact F by an application
of Van Kampen to the one-point compactification of Rn, but we shall not discuss the details
here.

In the above diagram, let Tm denote the upper-right solid torus, and Tn denote the bottom-
left solid torus, then the meridians of Tm correspond to the longitudes of Tn and vice versa. We
show that S3zK deformation retracts onto a space XmYXn, so that π1pS3zKq – π1pXmYXnq.
Here, Xm,n Ă Tm,n are spaces such that

Xm YXn –
r´1, 1s ˆ S1

p´1,θq„p´1,θ`2π{mq

p1,θq„p1,θ`2π{nq

.
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Figure 36: The sets Vm,φ and Wm,φ, and the deformation retract Hm,φ.

Before describing the deformation retract, let us already compute the fundamental group. Let
p denote the projection of the quotient space on the right hand side. Let ε ą 0 be small, then
the right hand side splits into ppp´ε, 1s ˆS1q and ppr´1, εq ˆS1q. It is straightforward to check
that these images deformation retract onto ppt1u ˆ S1q “ S1 mod 2πn and ppt´1u ˆ S1q “ J: Deformation

retract onto
S1 mod 2πn?
What do you
mean?

S1 mod 2πm, respectively, and the latter spaces are both homeomorphic to S1. Let γ be a loop
generating the fundamental group of the intersection ppp´ε, 1s ˆ S1q X ppr´1, εq ˆ S1q » S1.
By the previous argument, γ is both a generator of the fundamental group of ppp´ε, 1s ˆ S1q in
which γ » γn, and also a generator of the fundamental group of ppr´1, εqˆS1q in which γ » γm

. By Van Kampen, we finally get J: Let op! This
is a dangerous
expression. Do
you mean that
the image of
the generator
of the 1-sphere
in the intersec-
tion is n times
the generator
of π1Xn?

π1pXm YXnq “ π1pppp´ε, 1s ˆ S1q Y ppr´1, εq ˆ S1qq “ xrγs : rγsm “ rγsny.

We get to the task of defining the space Xm Ă Tm. For any meridian tφu ˆ BD2 of Tm, set

Vm,φ “ tψ ` nφ P S1 : mψ “ 0u, V 1
m,φ “ tψ ` nφ` π{m P S1 : mψ “ 0u

Wm,φ “ r0, 1s ˆ V 1
m,φ Ă D2.

Moving the Wm,φ through φ traces out the ‘corkscrew’ Xm “
Ť

φPS1 ιmptφu ˆ Wm,φq Ă Tm. J. I cannot un-
derstand what
you mean with
these expres-
sions.

Now, for each φ, there exists a deformation retract Hm,φ of D2zVm,φ onto Wm,φ, as shown in
Figure 36. A formula for the homotopy is, for example,

Hm,φpr, θ, tq “

´

r ¨ p1 ´ t ¨ p1 ´ rq ¨
m

π
dpθ, V 1

m,φqq, θ ¨ p1 ` t ¨ p´1qtpθ´nφqm{πudpθ, V 1
m,φqq

¯

.

(Here, d denotes the infimal distance in S1.) Taking the union over φ, we obtain a deformation
retract Hm from TmzK onto Xm. The space Xn Ă Tn and deformation retract Hn follow the
same construction with m and n switched.

Proposition 16.3. We have that Xm X T “ Xn X T “ Xm X Xn is a parallel copy of K.
Furthermore, the map

r0, 1s ˆ S1 Ñ
ď

φPS1

tφu ˆWm,φ

ph, φq ÞÑ Hm,φph, φ, 1q

induces a homeomorphism Xm – r0, 1s ˆ S1{p0, θq „ p0, θ ` 2π{mq, and likewise for Xn.
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To define a deformation retract on S3zK, we would need Hm and Hn to agree on T zK,
which they do not. This can be fixed by choosing constants α, β such that

Hmpαφ, 1, θ, tq “ Hnpβθ, 1, φ, tq,

and redefining the homotopies accordingly. In this way, the flow is directed perpendicularly to
the knot. Finally, this defines a deformation retract from S3zK onto Xm YXn.
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17 Equivalent surgery descriptions I (Maurits Brinkman)

In this section, we will show that the framed link given in Figure 37 is a surgery description for
the Poincaré homology sphere. This can be seen as a particular example of the theory treated
in Lecture 7 (14/3), where the main principle we use is Kirby’s theorem: two framed links give a
surgery description for the same manifold (up to isomorphism) if and only if those framed links
differ by blow-ups, blow-downs and/or handle slides.

Figure 37: Framed link Figure 38: Left-handed trefoil

Now, as we know from Boudewijn’s presentation on the Poincaré homology 3-sphere, we
know that the Poincaré homology sphere is equivalent to the surgery description given by the
trefoil knot having framing ´1. Therefore, by Kirby’s theorem, it is enough to show that the
framed links in Figure 37 and Figure 38 are related by some sequence of blow-ups/blow-downs
and handle slides.

In the first part of the sequence, we will use two types of moves. The first one, shown in
Figure 39, is the consequence of a handle slide, as we did in Lecture 7 (14/3). The second one, a
blow-down, where now two components pierce the disc of the unknot having framing ´1. Notice
that both are particular examples of Proposition 13.5.

To remark, the different colours that are used have no other purpose than clarification of
which components are added, and which vanish during the process. Also, the equality signs rep-
resent an equivalence relation defined by the fact that the links which are considered equivalent
produce the same manifold after surgery.

Figure 39: Consequence of a han-
dle slide Figure 40: Consequence of Proposition 13.5

Now, in Figure 41 we start transforming the framed link of Figure 37. The first equality
follows from a blow-up where we introduce three unknots having framing `1. By using a handle
slide, in exactly the same way as in Figure 39, the unknots (we just introduced) of framing `1
are linked to the outer unknots having framing ´2. The third, fourth, fifth and sixth equality
in Figure 41 are repetitions of performing a blow-down on the component having framing ´1,
in the fashion of Figure 40.

Having ended with the bottom right-most framed link in Figure 41, one could think that
we can still apply a blow-down using the component in green having framing `1... But, this
time, we do not have two components piercing through the unknot of framing `1, but rather
three components (the ones in blue). As we use Proposition 13.5 for r “ 3. By doing this
(first equality in Figure 42; the colours are different from the last framed link in Figure 41, for
clarification purposes), one produces a full left twist of the three components piercing through
the disc. After this, we perform a blow-down (second equality in Figure 42), which is possible J: How do you

get the middle
link in figure
42 from the
left one af-
ter this "full
twist"?
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Figure 41: Performing blow-ups, blow-downs and handle slides on the framed link of Figure 37

since the two components pierce the disc of the unknot (the one in red; framing `1) once. After J: Again, how
do you get the
right hand pic-
ture of figure
42?

this, we end up with a framed link where the same component (in orange) pierces the unknot
(in dark blue) twice. To further reduce this framed knot (the last one in Figure 42, we again
apply Proposition 13.5, which gives another full left twist. The new framing can be calculated
by the formula given in Exercise 13.2: 1 ` 3 ´ 2 ¨ rlinking numbers “ 1 ` 3 ´ 2 ¨ 2 “ 0

Figure 42: Performing a full left twist and blow-down, respectively
J:Not fin-
ished...
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18 Equivalent surgery descriptions II (Bram Brongers)

The aim of this lecture will be to show the equivalence of two surgery diagrams. We use the
techniques from lecture 12, in particular the handle slide move and the blow-up/blow-down
construction. We refer to 13.1 for the details. The final goal is to show the equivalence of the
two diagrams 43: Note that throughout all the images 44, 45, 46 and 48 we have marked the

Figure 43: The desired equivalence.

equality signs with a number, which will correspond to the explanation below.

Remark 18.1. We will not worry about the orientations of the knots, since they are not
displayed in the original text.

1. The starting point in the book is the graph which is on display in 44. By definition,
this graph represents the link which is drawn. The final equivalence that we wish to
demonstrate involves a total of m nodes with label ´2, following the node labelled ´7.
However, we shall see that we can first consider this simpler case, and by the end of the
procedure it will be completely clear how to obtain the general case.

2. Notice that the strands labelled ´3, ´2 and ´7 pierce the disk with boundary ´1 precisely
once. Hence, we can blow this down. The result is that the three knots which pierced the
disk now have linking number ˘1. We also need to shift the framing number, namely they
all need to be increased by 1, since the knot we removed had framing number ´1. This
gives the second equality. J: Why is the

resulting link
precisely what
you display? Is
there any full
twist?

3. Notice that the blow down has yielded another knot with framing number ´1, and the
corresponding disk is pierced by the strands labelled ´2 and ´6. Hence, we can again
blow this down, at the cost of an addition twist to the remaining strands, and shifting
their framing numbers up by 1, as above. This result is the third equality. J: Again it

doesn’t seem
obvious to me
that the link
you get is that
one precisely.

Figure 44: The first steps.
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4. Now, we will neglect the knot with framing number ´2 and focus on a way to rewrite the
"interesting" part of the link which remains. In particular, we are going to perform the
handle slide move on it. The setup for this is drawn at the start of 45. The red knot is a

Figure 45: Performing the handle slide.

framing for the component labelled ´1, and it is connected to the component labelled ´5
by a green band. This results in the link drawn. Observe that the linking number of the
two components is ˘2. Hence, the new framing number of the altered component becomes
´1 ´ 5 ¯ 2 ¨ 2 “ 2, since we are using an orientation reversing band. We have picked 2 as
the framing number because it makes the rest of the problem work. Then, we have drawn
green arrows to indicate where we are pulling the red strand. After pulling it as indicated,
we obtain the fourth equality.

5. The fifth equality simply results from pulling a strand over to the other side.

6. Now we notice that we have a link component with framing number ´1, which is pierced
by the other component only once. Hence, we can blow down again. Since there is only
one strand piercing, this strand does not obtain an extra twist, but we do increase the
framing number by 1. After pulling the only strand which remains, i.e. the red strand, we
obtain the sixth equality.

7. We continue in 46. The seventh equality is a simply isotopy, as indicated by the green

Figure 46: Rearranging the knot.

arrows.
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8. We now notice that we have a self-intersection of our knot. We want to blow this up, to
get the eighth equality. Strictly speaking, we cannot do this because both strands belong
to the same knot. If we pretend this is not a problem, then performing the handle slide J: But it is, es-

pecially for the
framing. Why
is the framing
still -1 after
introducing
the new com-
ponent?

move on the resulting link gives us the same scenario as equality 6) - which means there
indeed was not a problem. Thus, the blow up of the self-intersection results in the eigth
equality.

9. This is an isotopy, the goal of which is to "interchange the roles" of the ´1 and `1
components of the link. That is, we want to be able to blow down the ´1 component, so
we wish to drawn it as a little circle.

10. We are now nearly finished. The tenth equality is the result of the blow down, which we
have to do using the handle slide again, for the same reason as before - the two strands
piercing the disk belong to the same knot. This is resolved in the same manner as before,
and the resulting knot is the tenth equality. Notice that we have obtained a twist. J: What about

the new fram-
ing?

11. The final result is as follows. We had ignored all of the ´2 components of the link, up
until now. If we had not, then they would still be linked to the ´1 component, before
the tenth equality. After the blow down move, the nearest ´2 component which pierced
the disk associated to the ´1 component would obtain a new framing number, namely
´2 ` 1 “ ´1. This would result in 47. Thus, we can blow this down again, at the cost of

Figure 47: The general case.

an additional twist. Hence, if we have m-many ´2 components added, we get m additional
twists. This proves the result:

Figure 48: The desired equivalence.

65



19 Equivalent Kirby diagrams (Lisanne)

In this section, we will show the equivalence of the following Kirby diagrams:

Figure 49: The desired equivalence

On the left we see a Kirby diagram with two 1-handles, three 2-handles, of which one with
framing 0 and two with framing ´1. From now on they will be called the round, horizontal and
vertical 2-handle respectively. On the right we see a right-handed trefoil knot with framing 0.

We can split this process up into three parts

1. Cancellation of the horizontal 1-handle.

2. Cancellation of the vertical 1-handle.

3. Transforming the result from steps 1 and 2 into the trefoil knot.

In the first two steps we will be using 2-handle slides to ensure that we can cancel the "A"
1-handle. Then Doing handle slides, we need to keep the following things in mind.

1.

2.

3.

Part 1: Cancellation of horizontal 1-handle

In this part our goal is to cancel the horizontal 1-handle, from now on called the horizontal 1-
handle using the ideas stated above. Note that I did not write the A’s and B’s and the framing
everywhere, since they did not change from the starting figure and it would have made the
pictures less clear.

Our first step is doing a handle slide of the round 2-handle w.r.t. the horizontal 2-handle
with an untwisted band. This results in the following figure: As you can see, when doing a
handle slide, we are combining the first two steps from above. Moreover, as you can see, the J: To what are

you glueing
the band?framing of the round 2-handle changed from 0 to -1. Using the formula above we see

n1
1 “ 0 ` p´1q ` lkpL1, L2q,

where L1, L2 are the original round and horizontal 2-handle respectively, which have linking
number 0. So indeed, the new framing of the round 2-handle is -1.

Next we do another handle slide of the round 2-handle w.r.t the horizontal 2-handle, but
now on the bottom and with twisted band. This results in the following figure: Again, following J: Why does

it have to be
twisted?
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Figure 50: The first handle slide

Figure 51: The second handle slide

orientation, the round 2-handle first goes under and then over the horizontal 2-handle. Moreover,
it also entangles itself on the left side in the same way it did the horizontal 2-handle in the last
step. The framing of the round 2-handle changed back to 0 again. Using the formula we see

n2
1 “ ´1 ` p´1q ´ lkpL1

1, L2q,

where L1
1, L2 are the round 2-handle from the last step and the horizontal 2-handle respectively.

As logic entails, they have linking number -1, so we find

n2
1 “ ´1 ´ 1 ´ 2p´1q “ ´2 ` 2 “ 0.

After these two steps, the horizontal 2-handle is not connected to the rest of the Kirby
diagram anymore, so by isotopy we can pull it out and then we can cancel it. This leaves us
with the following Kirby diagram

Figure 52: The resulting Kirby diagram before and after isotopy
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Part 2: Cancellation of the vertical 1-handle

So, now we are left with a single 1-handle and two 2-handles, the round and vertical one. The
idea of this part is practically the same as part 1, but everything is a bit more entangled already.
Again, not everything is denoted in the picture because of the reasons above.

So, the first handle slide is of the round 2-handle w.r.t. the vertical 2-handle with an
untwisted band. This results in the following figure: As you can see, the round 2-handle crosses

Figure 53: The third handle slide

over itself twice in the middle, since it follows the vertical 2-handle in everything it does. The
framing of the round 2-handle changes again from 0 to -1, using the same logic as in step 1,
where indeed the 2 links as seen Figure ?? have linking number 0.

Then doing another handle slide on the left with a twised band, we get: The framing of the

Figure 54: The fourth handle slide

round 2-handle changed back to 0 again as we desire via the same construction as in part 1.
Now the vertical 1-handle is not connected anymore, so we can pull it out by isotopy and cancel
it. This then leaves us with the following Kirby diagram:

Part 3: Transforming to the trefoil knot

We are now left with only a single 2-handle with framing 0, so we are on the right track.
However, the Kirby diagram shown in Figure 55 does not really resemble the trefoil knot at all.
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Figure 55: The resulting Kirby diagram before and after isotopy

To transform the resulting Kirby diagram into the trefoil knot, we will be using Reidemeister
moves as seen in Figure 1.

69


	Lecture 1 (7/2)
	Homology (Bram Brongers)
	Homotopy groups (Ruben IJpma)
	Lecture 2 (14/2): Handle decompositions
	Classification of closed, connected, orientable surfaces I (Maurits Brinkman)
	Classification of closed, connected, orientable surfaces II (Kevin van Helden)
	Lecture 3 (21/2): 3-manifolds
	The lens spaces L(p,q) (Ruben van Dijk)
	Handle decomposition of RPn and CPn (Lisanne Sibma) 
	Lecture 4 (28/2): Orientability and Connected sum of surfaces
	Lecture 5 (7/3): Seifert manifolds
	Lecture 6 (10/3)
	Lecture 7 (14/3)
	L(p,1) as the boundary of a 4-manifold (Ruben van Dijk)
	Lecture 8 (21/3)
	Torus knots (Ruben IJpma)
	Equivalent surgery descriptions I (Maurits Brinkman)
	Equivalent surgery descriptions II (Bram Brongers)
	Equivalent Kirby diagrams (Lisanne)

