# Gradings and a TQFT

#### Kevin van Helden

PhD in Fundamentals of the Universe Rijksuniversiteit Groningen

Talk 10 on Khovanov Homology

8 December 2020





# Pre-additive category

#### Definition

A **pre-additive category** C is a category C such that for all  $C, D, E \in \mathsf{Ob}(C)$  and for all  $f, g \in \mathsf{Mor}(C, D)$  and  $h, j \in \mathsf{Mor}(D, E)$ , we have that

- Mor(C, D) is an abelian group;
- 2  $h \circ (f +_{G_1} g) = (h \circ f) +_{G_3} (h \circ g);$

for  $G_1 := Mor(C, D)$ ,  $G_2 := Mor(D, E)$  and  $G_3 := Mor(C, E)$ .

• Extend (non-pre-additive) categories to pre-additive categories by allowing  $\mathbb{Z}$ -linear combinations of the "original" morphisms.



## Mat(C)

### Definition

Let C be pre-additive. Then Mat(C) is a category with

- **①** Objects: direct sums  $\bigoplus_{i=1}^{n} \mathcal{O}_{i}$  of objects  $\mathcal{O}_{i}$  of  $\mathcal{C}$ ;
- ② Morphisms: a morphism f from  $\bigoplus_{i=1}^{n} \mathcal{O}_{i}$  to  $\bigoplus_{j=1}^{n'} \mathcal{O}'_{j}$  is a matrix consisting of entries  $f_{ii}: \mathcal{O}_{i} \to \mathcal{O}_{i}$ ;
- $$\begin{split} \text{ if } f, \tilde{f} \in \operatorname{Mor}(\bigoplus_{i=1}^n \mathcal{O}_i, \bigoplus_{j=1}^{n'} \mathcal{O}_j') \text{ and } \\ g \in \operatorname{Mor}(\bigoplus_{j=1}^{n'} \mathcal{O}_j', \bigoplus_{k=1}^{n''} \mathcal{O}_k''), \text{ then } f + \tilde{f} \text{ is given by } \\ (f + \tilde{f})_{ij} = f_{ij} + \tilde{f}_{ij} \text{ and } g \circ f \text{ is given by } \end{aligned}$$

$$(g\circ f)_{ik}=\sum_{j=1}^{n'}g_{jk}\circ f_{ij}.$$

iversiteit zen

## Cobordisms of tangles

### Definition (Cobordisms)

Let B be a finite subset of  $S^1$ . The category  $\mathbf{Cob}^3(B)$  consists of

- Objects: closed oriented 1-submanifolds T of the unit disk  $D^1$  with  $\partial T = B$ ;
- Morphisms:  $C: T \to T'$  is a oriented 2-submanifold of  $D^1 \times I$  such that  $\partial C = T' \sqcup \overline{T} \sqcup (B \times I)$ , where  $\overline{T}$  is T with the reverse orientation.





### Graded categories

#### Definition

Let  $\mathcal{A}$  be a category. Then an  $\mathcal{A}$ -graded category is a catgeory  $\mathcal{C}$  with a functor  $F:\mathcal{C}\to\mathcal{A}$ .



## Graded categories

#### Definition

Let  $\mathcal{A}$  be a category. Then an  $\mathcal{A}$ -graded category is a catgeory  $\mathcal{C}$  with a functor  $F: \mathcal{C} \to \mathcal{A}$ .

Here: choose  $\mathcal A$  to be the category  $\mathbb Z$ : one object  $\star$  and morphisms which form the group  $\mathbb Z$  with composition as the group multiplication.



## Graded categories

### Definition

Let  $\mathcal{A}$  be a category. Then an  $\mathcal{A}$ -graded category is a catgeory  $\mathcal{C}$  with a functor  $F: \mathcal{C} \to \mathcal{A}$ .

Here: choose  $\mathcal A$  to be the category  $\mathbb Z$ : one object  $\star$  and morphisms which form the group  $\mathbb Z$  with composition as the group multiplication.

#### Definition

A  $\mathbb{Z}$ -category is a category  $\mathcal{C}$  with a map  $F: \mathsf{Mor}(C,D) \to \mathbb{Z}$  for all  $C,D \in \mathsf{Ob}(\mathcal{C})$  such that for all  $C,D,E \in \mathsf{Ob}(\mathcal{C})$  and  $f \in \mathsf{Mor}(C,D), g \in \mathsf{Mor}(D,E)$ , we have that

• 
$$F(g \circ f) = F(g) + F(f);$$

**2** 
$$F(id_C) = 0$$
.

iversiteit zen



## Shift of graded categories

If C is a Z-graded category, then we can shift objects of C by m ∈ Z.
 In that case, we have

```
Mor(\mathcal{O}_1\{m_1\}, \mathcal{O}_2\{m_2\}) = \text{Mor}(\mathcal{O}_1, \mathcal{O}_2), but if f \in \text{Mor}(\mathcal{O}_1, \mathcal{O}_2) has F(f) = d, then f \in \text{Mor}(\mathcal{O}_1\{m_1\}, \mathcal{O}_2\{m_2\}) has F(f) = d + m_2 - m_1.
```



Applying our TQFT

## Graded categories?

- If C is a  $\mathbb{Z}$ -graded category, then we say that  $F(f) = d \in \mathbb{Z}$  for a morphism f in Mat(C) if  $F(f_{ij}) = d$  for all entries.
- A similar statement holds for Kom(C) (or Kom(Mat(C))).



## The degree of a cobordism (part 1)

We pick  $F = \deg$ .

#### Definition

Let C be a morphism of  $\mathbf{Cob}^3(B)$ . Then the degree of C is given by  $\deg(C) = \chi(C) - \frac{1}{2}|B|$ , where  $\chi(C)$  is the Euler characteristic of C. and where |B| is the number of vertical boundary components of C.

### Example

- **2** deg(4) = -1.





# The degree of a cobordism (part 2)

### Proposition

The degree of a cobordism is additive under compositions.

#### Proof.

iversiteit gen



# The degree of a cobordism (part 2)

#### **Proposition**

The degree of a cobordism is additive under compositions.

#### Proof.

Let C, D be composable morphisms of  $Cob^3(B)$ . Claim:  $\chi(D \cap C) = \frac{1}{2}|B|$ .

> iversiteit zen



# The degree of a cobordism (part 2)

#### **Proposition**

The degree of a cobordism is additive under compositions.

#### Proof.

Let C, D be composable morphisms of  $Cob^3(B)$ .

Claim:  $\chi(D \cap C) = \frac{1}{2}|B|$ .

Given the claim, we find that

$$\begin{split} \deg(D \circ C) &= \deg(D \cup C) = \chi(D \cup C) - \frac{1}{2}|B| \\ &= \chi(D) + \chi(C) - \chi(D \cap C) - \frac{1}{2}|B| \\ &= \chi(D) + \chi(C) - \frac{1}{2}|B| - \frac{1}{2}|B| = \deg(D) + \deg(C). \end{split}$$

iversiteit

## The degree of a cobordism (part 3)

#### **Proposition**

The degree of a cobordism is additive under planar diagrams.

#### Lemma

The Euler characteristic of a cylinder is 0.

The Euler characteristic of two circles connected by  $\ell$  lines is  $-\ell$ .

The Euler characteristic of a disk is 1.









rijksuniversiteit groningen



## The degree of a cobordism (part 4)

### **Proposition**

The degree of a cobordism is additive under planar diagrams.

#### Proof.

Let D be a planar diagram with two inputs,  $|B_D|$  points on the outer circle, and  $|B_i|$  on the i-th input. Furthermore, let  $C_i$  be a morphism of  $\mathbf{Cob}^3(B_i)$ .

Claim: 
$$\chi(D) = \frac{1}{2}(|B_D| + |B_1| + |B_2|).$$



# The degree of a cobordism (part 5)

#### Proof.

Given the claim, we find that

$$\begin{split} \deg(D(C_1,C_2)) &= \chi((D(C_1,C_2))) - \frac{1}{2}|B_D| \\ &= \chi(D \cup C_1 \cup C_2) - \frac{1}{2}|B_D| \\ &= \chi(D) + \chi(C_1) + \chi(C_2) - \chi(D \cap C_1) - \chi(D \cap C_2) - \frac{1}{2}|B_D| \\ &= \frac{1}{2}(|B_D| + |B_1| + |B_2|) + \chi(C_1) + \chi(C_2) - |B_1| - |B_2| - \frac{1}{2}|B_D| \\ &= \chi(C_1) + \chi(C_2) - \frac{1}{2}|B_1| - \frac{1}{2}|B_2| \\ &= \deg(C_1) + \deg(C_2). \quad \Box \end{split}$$



# Homogeneous relations

### **Proposition**

The S, T and 4Tu relations are degree-homogeneous.

+ = + +

S

Ί

4-Tu



## A new complex (part 1)

Let T be a tangle diagram. Consider the complex Kh(T) given by  $Kh^r(T) := [[T]]^r \{r + n_+ - n_-\}.$ 

#### Theorem

- All differentials in Kh(T) are of degree 0;
- Kh(T) is an invariant of T up to degree-0 homotopy equivalences.



# A new complex (part 2)

#### Theorem

- All differentials in Kh(T) are of degree 0;
- Kh(T) is an invariant of T up to degree-0 homotopy equivalences.

#### Proof.

If  $f : [[T]]^k \to [[T]]^{k+1}$  has degree d, then  $f : \mathsf{Kh}^k(T) \to \mathsf{Kh}^{k+1}(T)$  has degree  $\deg(f) + (k+1+n_+-n_-) - (k+n_+-n_-) = \deg(f) + 1$ .

iversiteit



A functor  $\mathcal{F}: \mathsf{Cob}^3_{/\ell}(B) \to \textbf{Vect}_{\mathbb{Q}}$ 





$$\begin{array}{c} \mathsf{A} \; \mathsf{functor} \; \mathcal{F} : \mathsf{Cob}^3_{/\ell}(B) \to \mathbf{Vect}_{\mathbb{Q}} \\ \downarrow \\ \mathsf{A} \; \mathsf{functor} \; \mathcal{F} : \mathsf{Mat}(\mathsf{Cob}^3_{/\ell}(B)) \to \mathbf{Vect}_{\mathbb{Q}} \end{array}$$



$$\begin{array}{c} \mathsf{A} \; \mathsf{functor} \; \mathcal{F} : \mathsf{Cob}^3_{/\ell}(B) \to \mathbf{Vect}_{\mathbb{Q}} \\ \downarrow \\ \mathsf{A} \; \mathsf{functor} \; \mathcal{F} : \mathsf{Mat}(\mathsf{Cob}^3_{/\ell}(B)) \to \mathbf{Vect}_{\mathbb{Q}} \\ \downarrow \\ \mathsf{A} \; \mathsf{functor} \; \mathcal{F} : \mathsf{Kom}(\mathsf{Mat}(\mathsf{Cob}^3_{/\ell}(B))) \to \mathsf{Kom}(\mathbf{Vect}_{\mathbb{Q}}) \end{array}$$









A functor 
$$\mathcal{F}: \mathsf{Cob}^3_{/\ell}(B) \to \mathsf{Vect}_{\mathbb{Q}}$$

$$\downarrow$$
A functor  $\mathcal{F}: \mathsf{Mat}(\mathsf{Cob}^3_{/\ell}(B)) \to \mathsf{Vect}_{\mathbb{Q}}$ 

$$\downarrow$$
A functor  $\mathcal{F}: \mathsf{Kom}(\mathsf{Mat}(\mathsf{Cob}^3_{/\ell}(B))) \to \mathsf{Kom}(\mathsf{Vect}_{\mathbb{Q}})$ 

$$\downarrow$$

$$\mathcal{F}\mathsf{Kh}(T) \text{ is an invariant of } T \text{ up to homotopy}$$

$$\downarrow$$

$$H(\mathcal{F}\mathsf{Kh}(T)) \text{ is an invariant of } T$$

If we change  $\mathbf{Vect}_{\mathbb{Q}}$  into  $\mathbf{grVect}_{\mathbb{Q}}$ , and if  $\mathcal{F}$  respects degrees, (i.e.  $\deg(\mathcal{F}(f)) = \deg(f)$ ), then  $H(\mathcal{F}\mathsf{Kh}(T))$  is a graded invariant of T.



## Our Frobenius algebra

Our choice of Frobenius algebra is  $V = \mathbb{Q}[x] \oplus \mathbb{Q}[1]$ ,  $\deg(x) = -1$ ,  $\deg(1) = 1$ 

- $m(1 \otimes 1) = 1$ ,  $m(x \otimes 1) = x = m(1 \otimes x)$ ,  $m(x \otimes x) = 0$ ;
- $\eta(1) = 1$ ;
- $\epsilon(1) = 0, \, \epsilon(x) = 1.$

Call the corresponding TQFT  $\mathcal{F}$ .



## Properties of $\mathcal{F}$ (part 1)

### Proposition

 $\mathcal F$  respects degrees and descends to a functor  $\mathsf{Cob}^3_{/\ell}(\emptyset) o \mathbf{grVect}_{\mathbb O}.$ 

#### Proof.

Check the degrees! What is the degree of a pair of pants?

iversiteit zen



## Properties of $\mathcal{F}$ (part 1)

### Proposition

 $\mathcal F$  respects degrees and descends to a functor  $\mathsf{Cob}^3_{/\ell}(\emptyset) o \mathbf{grVect}_{\mathbb O}.$ 

#### Proof.

Check the degrees! What is the degree of a pair of pants?

(S) 
$$\epsilon \circ \eta = 0$$
, as  $\epsilon(\eta(1)) = \epsilon(1) = 0$ .

iversiteit gen



# Properties of $\mathcal{F}$ (part 1)

### Proposition

 $\mathcal F$  respects degrees and descends to a functor  $\mathrm{Cob}^3_{/\ell}(\emptyset) o \mathbf{grVect}_{\mathbb O}.$ 

#### Proof.

Check the degrees! What is the degree of a pair of pants?

(S) 
$$\epsilon \circ \eta = 0$$
, as  $\epsilon(\eta(1)) = \epsilon(1) = 0$ .

(*T*) The torus *T* is given by  $\epsilon \circ m \circ \delta \circ \eta$ . We have that

$$\epsilon(m(\Delta(\eta(1)))) = \epsilon(m(\Delta(1))) = \epsilon(m(1 \otimes x + x \otimes 1))$$
  
= \epsilon(x + x) = 2. (4)

iversiteit zen



# Properties of $\mathcal{F}$ (part 2)

### Proof.

(47*u*) We prove that 
$$L := (\mathcal{F}(\bigcirc \bigcirc \bigcirc) + \mathcal{F}(\bigcirc \bigcirc \bigcirc))$$
 (1) is equal to  $R := (\mathcal{F}(\bigcirc \bigcirc \bigcirc) + \mathcal{F}(\bigcirc \bigcirc))$  (1).





# Properties of $\mathcal{F}$ (part 2)

### Proof.

(47*u*) We prove that  $L := (\mathcal{F}(\bigcirc \bigcirc \bigcirc) + \mathcal{F}(\bigcirc \bigcirc \bigcirc))$  (1) is equal to  $R := (\mathcal{F}(\bigcirc \bigcirc) + \mathcal{F}(\bigcirc \bigcirc))$  (1) We find that

$$L := \Delta \eta(1) \otimes \eta(1) \otimes \eta(1) + \eta(1) \otimes \eta(1) \otimes \Delta \eta(1)$$

$$= 1 \otimes x \otimes 1 \otimes 1 + x \otimes 1 \otimes 1 \otimes 1$$

$$+ 1 \otimes 1 \otimes 1 \otimes x + 1 \otimes 1 \otimes x \otimes 1.$$
(5)

By applying permutations, this is equal to R.



